Bivariant Chern Character and Longitudinal Index
نویسنده
چکیده
In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale groupoids [9] in the case of fibrations.
منابع مشابه
Bivariant Chern Character and the Longitudinal Index Theory
In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale grou...
متن کاملRetraction of the Bivariant Chern Character
We show that the bivariant Chern character in entire cyclic cohomology constructed in a previous paper in terms of superconnections and heat kernel regularization, retracts on periodic cocycles under some finite summability conditions. The trick is a bivariant generalization of the Connes-Moscovici method for finitely summable K-cycles. This yields concrete formulas for the Chern character of p...
متن کاملA Bivariant Chern Character for Families of Spectral Triples
This paper is an attempt to provide a JLO-type formula for a bivariant Chern character defined on “families of spectral triples”. Such families should be viewed as an algebraic version of unbounded Kasparov bimodules. The Chern character is built from the exponential of the curvature of a superconnection, leading to a heat kernel regularization of traces. We work within the Cuntz-Quillen formal...
متن کاملChern Character for Totally Disconnected Groups
In this paper we construct a bivariant Chern character for the equivariant KK-theory of a totally disconnected group with values in bivariant equivariant cohomology in the sense of Baum and Schneider. We prove in particular that the complexified left hand side of the Baum-Connes conjecture for a totally disconnected group is isomorphic to cosheaf homology. Moreover, it is shown that our transfo...
متن کاملThe equivariant index theorem in entire cyclic cohomology
Let G be a locally compact group acting smoothly and properly by isometries on a complete Riemannian manifoldM , with compact quotient GnM . There is an assembly map W K .M/ ! K .B/ which associates to any Gequivariant K-homology class onM , an element of the topological K-theory of a suitable Banach completion B of the convolution algebra of continuous compactly supported functions on G. The a...
متن کامل