Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast

نویسندگان

  • Christian Miller
  • Björn Schwalb
  • Kerstin Maier
  • Daniel Schulz
  • Sebastian Dümcke
  • Benedikt Zacher
  • Andreas Mayer
  • Jasmin Sydow
  • Lisa Marcinowski
  • Lars Dölken
  • Dietmar E Martin
  • Achim Tresch
  • Patrick Cramer
چکیده

To obtain rates of mRNA synthesis and decay in yeast, we established dynamic transcriptome analysis (DTA). DTA combines non-perturbing metabolic RNA labeling with dynamic kinetic modeling. DTA reveals that most mRNA synthesis rates are around several transcripts per cell and cell cycle, and most mRNA half-lives range around a median of 11 min. DTA can monitor the cellular response to osmotic stress with higher sensitivity and temporal resolution than standard transcriptomics. In contrast to monotonically increasing total mRNA levels, DTA reveals three phases of the stress response. During the initial shock phase, mRNA synthesis and decay rates decrease globally, resulting in mRNA storage. During the subsequent induction phase, both rates increase for a subset of genes, resulting in production and rapid removal of stress-responsive mRNAs. During the recovery phase, decay rates are largely restored, whereas synthesis rates remain altered, apparently enabling growth at high salt concentration. Stress-induced changes in mRNA synthesis rates are predicted from gene occupancy with RNA polymerase II. DTA-derived mRNA synthesis rates identified 16 stress-specific pairs/triples of cooperative transcription factors, of which seven were known. Thus, DTA realistically monitors the dynamics in mRNA metabolism that underlie gene regulatory systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation.

To monitor eukaryotic mRNA metabolism, we developed comparative dynamic transcriptome analysis (cDTA). cDTA provides absolute rates of mRNA synthesis and decay in Saccharomyces cerevisiae (Sc) cells with the use of Schizosaccharomyces pombe (Sp) as an internal standard. cDTA uses nonperturbing metabolic labeling that supersedes conventional methods for mRNA turnover analysis. cDTA reveals that ...

متن کامل

Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels.

The rates of mRNA synthesis and degradation determine cellular mRNA levels and can be monitored by comparative dynamic transcriptome analysis (cDTA) that uses nonperturbing metabolic RNA labeling. Here we present cDTA data for 46 yeast strains lacking genes involved in mRNA degradation and metabolism. In these strains, changes in mRNA degradation rates are generally compensated by changes in mR...

متن کامل

Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA)

Standard transcriptomics measures total cellular RNA levels. Our understanding of gene regulation would be greatly improved if we could measure RNA synthesis and decay rates on a genome-wide level. To that end, the Dynamic Transcriptome Analysis (DTA) method has been developed. DTA combines metabolic RNA labeling with standard transcriptomics to measure RNA synthesis and decay rates in a precis...

متن کامل

Periodic mRNA synthesis and degradation co‐operate during cell cycle gene expression

During the cell cycle, the levels of hundreds of mRNAs change in a periodic manner, but how this is achieved by alterations in the rates of mRNA synthesis and degradation has not been studied systematically. Here, we used metabolic RNA labeling and comparative dynamic transcriptome analysis (cDTA) to derive mRNA synthesis and degradation rates every 5 min during three cell cycle periods of the ...

متن کامل

Comprehensive transcriptional analysis of the oxidative response in yeast.

The oxidative stress response in Saccharomyces cerevisiae has been analyzed by parallel determination of mRNA levels and transcription rates for the entire genome. A mathematical algorithm has been adapted for a dynamic situation such as the response to stress, to calculate theoretical mRNA decay rates from the experimental data. Yeast genes have been grouped into 25 clusters according to mRNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011