Halocarbons over the rainforest
نویسندگان
چکیده
Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and 1000 km of pristine tropical rainforest in Suriname and French Guyana (3–6 • N, 51–59 • W) in October 2005. In the boundary layer (0–1.4 km), maritime air masses initially low in forest hy-5 drocarbons, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4–1.0 years) in comparison to the transport times (1–2 days), emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function 10 of forest contact time and the respective relationship used to determine fluxes from the rainforest during the long dry season. Emission fluxes have been calculated for methyl chloride and chloroform as 9.4 (±4.0 2σ) and 0.34 (±0.14 2σ) µg m −2 h −1 , respectively. No significant flux from the rainforest was observed for methyl bromide within the limits of these measure-15 ments. The flux of methyl chloride was in general agreement with the flux measured over the same region in March 1998 during the LBA Claire project using a different analytical system. This confirms that the rainforest is a strong source for methyl chloride and suggests that this emission is relatively uniform throughout the year. In contrast the chloroform flux derived here is a factor of three less than previous measurements 20 made in March 1998 suggesting a pronounced ecosystem variation. The differences in chloroform fluxes could not be attributed to either temperature or rainfall changes. The global extrapolation of the derived fluxes led to 1.5 (±0.6 2σ) Tg yr −1 for methyl chloride , which is in the range of the missing source postulated by previous model studies and 55 (±22 2σ) Gg yr −1 for chloroform.
منابع مشابه
Source attribution of Bornean air masses by back trajectory analysis during the OP3 project
Atmospheric composition affects the radiative balance of the Earth through the creation of greenhouse gases and the formation of aerosols. The latter interact with incoming solar radiation, both directly and indirectly through their effects on cloud formation and lifetime. The tropics have a major influence on incoming sunlight however the tropical atmosphere is poorly characterised, especially...
متن کاملContinuing global significance of emissions of Montreal Protocol–restricted halocarbons in the United States and Canada
[1] Contemporary emissions of six restricted, ozone-depleting halocarbons, chlorofluorocarbon-11 (CFC-11, CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2FCClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), andHalon-1211 (CBrClF2), and two nonregulated trace gases, chloroform (CHCl3) and sulfur hexafluoride (SF6), are estimated for the United States and Canada. The estimates derive from 900...
متن کاملThe structure of free radical metabolites detected by EPR spin trapping and mass spectroscopy from halocarbons in rat liver microsomes.
Electron impact (EI) tandem mass spectrometry (MS/MS) combined with EPR spin trapping was used to detect and identify the free radical metabolites of various halocarbons in rat liver microsomal dispersions. EPR spectra of the spin adducts of radical metabolites derived from fluorine-containing halocarbons display fluorine hyperfine splitting, which can be used as proof for the identification of...
متن کاملStratospheric ozone depletion due to nitrous oxide: influences of other gases.
The effects of anthropogenic emissions of nitrous oxide (N(2)O), carbon dioxide (CO(2)), methane (CH(4)) and the halocarbons on stratospheric ozone (O(3)) over the twentieth and twenty-first centuries are isolated using a chemical model of the stratosphere. The future evolution of ozone will depend on each of these gases, with N(2)O and CO(2) probably playing the dominant roles as halocarbons r...
متن کاملUnderstorey bird responses to the edge-interior gradient in an isolated tropical rainforest of Malaysia
Forest fragmentation results in a loss of forest interior and an increase in edge habitat. We studied how understorey bird community composition and habitat variables changed along an edge-to-interior gradient in a 1248-ha lowland rainforest patch in peninsular Malaysia. Birds and environmental variables such as vegetation structure and litter depth were detected within a 25-m radius of each of...
متن کامل