Second-Order Classical Sequent Calculus
نویسنده
چکیده
We present a sequent calculus that allows to abstract over a type variable. The introduction of the abstraction on the right-hand side of a sequent corresponds to the universal quantification; whereas, the introduction of the abstraction on the lefthand side of a sequent corresponds to the existential quantification. The calculus provides a correspondence with second-order classical propositional logic. To show consistency of the logic and consequently of the type system, we prove the property of strong normalization. The proof is based on an extension of the reducibility method, consisting of associating to each type two sets: a set of of strong normalizing terms and a set of strong normalizing co-terms.
منابع مشابه
LKQ and LKT: Sequent calculi for second order logic based upon dual linear decompositions of classical implication by
متن کامل
The Isomorphism Between Expansion Proofs and Multi-Focused Sequent Proofs
The sequent calculus is often criticized for requiring proofs to contain large amounts of low-level syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can separate closely related steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature of sequent proofs f...
متن کاملA multi-focused proof system isomorphic to expansion proofs
The sequent calculus is often criticized for requiring proofs to contain large amounts of low-level syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can separate closely related steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature of sequent proofs f...
متن کاملOn the Construction of Analytic Sequent Calculi for Sub-classical Logics
Proof theory reveals a wide mosaic of possibilities for sub-classical logics. These are logics that are strictly contained (as consequence relations) in classical logic. Thus, by choosing a subset of axioms and derivation rules that are derivable in (some proof system for) classical logic, one easily obtains a (proof system for a) sub-classical logic. Various important and useful non-classical ...
متن کاملProof Search in the Intuitionistic Sequent Calculus
The use of Herbrand functions (sometimes called Skolemization) plays an important role in classical theorem proving and logic programming. We define a notion of Herbrand functions for the full intuitionistic predicate calculus. This definition is based on the view that the proof-theoretic role of Herbrand functions (to replace universal quantifiers), and of unification (to find instances corres...
متن کامل