Erratum: The complex structure of receptive fields in the middle temporal area
نویسندگان
چکیده
Neurons in the middle temporal area (MT) are often viewed as motion detectors that prefer a single direction of motion in a single region of space. This assumption plays an important role in our understanding of visual processing, and models of motion processing in particular. We used extracellular recordings in area MT of awake, behaving monkeys (M. mulatta) to test this assumption with a novel reverse correlation approach. Nearly half of the MT neurons in our sample deviated significantly from the classical view. First, in many cells, direction preference changed with the location of the stimulus within the receptive field. Second, the spatial response profile often had multiple peaks with apparent gaps in between. This shows that visual motion analysis in MT has access to motion detectors that are more complex than commonly thought. This complexity could be a mere byproduct of imperfect development, but can also be understood as the natural consequence of the non-linear, recurrent interactions among laterally connected MT neurons. An important direction for future research is to investigate whether these in homogeneities are advantageous, how they can be incorporated into models of motion detection, and whether they can provide quantitative insight into the underlying effective connectivity.
منابع مشابه
Retinotopy and functional subdivision of human areas MT and MST.
We performed a series of functional magnetic resonance imaging experiments to divide the human MT+ complex into subregions that may be identified as homologs to a pair of macaque motion-responsive visual areas: the middle temporal area (MT) and the medial superior temporal area (MST). Using stimuli designed to tease apart differences in retinotopic organization and receptive field size, we esta...
متن کاملA lack of anticipatory remapping of retinotopic receptive fields in the middle temporal area.
The middle temporal (MT) area has traditionally been thought to be a retinotopic area. However, recent functional magnetic resonance imaging and psychophysical evidence have suggested that human MT may have some spatiotopic processing. To gain an understanding of the neural mechanisms underlying this process, we recorded neurons from area MT in awake behaving animals performing a simple saccade...
متن کاملPredictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and si...
متن کاملDistinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements.
In humans, functional imaging studies have demonstrated a homologue of the macaque motion complex, MT+ [suggested to contain both middle temporal (MT) and medial superior temporal (MST)], in the ascending limb of the inferior temporal sulcus. In the macaque monkey, motion-sensitive areas MT and MST are adjacent in the superior temporal sulcus. Electrophysiological research has demonstrated that...
متن کاملCenter-surround interactions in the middle temporal visual area of the owl monkey.
Microelectrode recording and 2-deoxyglucose (2dg) labeling were used to investigate center-surround interactions in the middle temporal visual area (MT) of the owl monkey. These techniques revealed columnar groups of neurons whose receptive fields had opposite types of center-surround interaction with respect to moving visual stimuli. In one type of column, neurons responded well to objects suc...
متن کامل