Balanced Plasticity and Stability of the Electrical Properties of a Molluscan Modulatory Interneuron after Classical Conditioning: A Computational Study
نویسندگان
چکیده
The Cerebral Giant Cells (CGCs) are a pair of identified modulatory interneurons in the Central Nervous System of the pond snail Lymnaea stagnalis with an important role in the expression of both unconditioned and conditioned feeding behavior. Following single-trial food-reward classical conditioning, the membrane potential of the CGCs becomes persistently depolarized. This depolarization contributes to the conditioned response by facilitating sensory cell to command neuron synapses, which results in the activation of the feeding network by the conditioned stimulus. Despite the depolarization of the membrane potential, which enables the CGGs to play a key role in learning-induced network plasticity, there is no persistent change in the tonic firing rate or shape of the action potentials, allowing these neurons to retain their normal network function in feeding. In order to understand the ionic mechanisms of this novel combination of plasticity and stability of intrinsic electrical properties, we first constructed and validated a Hodgkin-Huxley-type model of the CGCs. We then used this model to elucidate how learning-induced changes in a somal persistent sodium and a delayed rectifier potassium current lead to a persistent depolarization of the CGCs whilst maintaining their firing rate. Including in the model an additional increase in the conductance of a high-voltage-activated calcium current allowed the spike amplitude and spike duration also to be maintained after conditioning. We conclude therefore that a balanced increase in three identified conductances is sufficient to explain the electrophysiological changes found in the CGCs after classical conditioning.
منابع مشابه
Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory
BACKGROUND It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified...
متن کاملIn vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis.
In vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis. J. Neurophysiol. 78: 2351-2362, 1997. An in vitro preparation was developed that allowed electrophysiological analysis of appetitive conditioning of feeding in the model molluscan system, Lymnaea. The network generating the feeding motor program (fictive feeding) is well characterized at the ...
متن کاملComputational Investigation on Alcohol Nano Sensors in Combination with Carbon Nanotube; A Monte Carlo and Ab Initio Simulation
Single walled nanotubes (SWNT) are common interested nanovehicle to make biosensors more sensitive.Carbon nanotubes (CNTs) have many distinct properties make them to be exploited to develop the nextgeneration of such nano sensors .The Keto-Enol tautomerization is one of the most common investigatedsubjects of isomerism in this regards, sensors are devices that are able to detect and change the ...
متن کاملPerformance, Thermal Stability and Optimum Design Analyses of Rectangular Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation
In this study, we analysed the thermal performance, thermal stability and optimum design analyses of a longitudinal, rectangular fin with temperature-dependent, thermal properties and internal heat generation under multi-boiling heat transfer using Haar wavelet collocation method. The effects of the key and controlling parameters on the thermal performance of the fin are investigated. The therm...
متن کاملRole of Tonic Inhibition in Associative Reward Conditioning in Lymnaea
Changes in the strength of excitatory synaptic connections are known to underlie associative memory formation in the molluscan nervous system but less is known about the role of synaptic inhibition. Tonic or maintained synaptic inhibition has an important function in controlling the Lymnaea feeding system and is known to suppress feeding in the absence of food or in satiated animals. Tonic inhi...
متن کامل