Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

نویسندگان

  • Yasuyuki Akita
  • Jose M Baldasano
  • Rob Beelen
  • Marta Cirach
  • Kees de Hoogh
  • Gerard Hoek
  • Mark Nieuwenhuijsen
  • Marc L Serre
  • Audrey de Nazelle
چکیده

In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Land-Use Regression Modeling with Dispersion and Chemistry Transport Modeling to Assign Air Pollution Concentrations within the Ruhr Area

Two commonly used models to assess air pollution concentration for investigating health effects of air pollution in epidemiological studies are Land Use Regression (LUR) models and Dispersion and Chemistry Transport Models (DCTM). Both modeling approaches have been applied in the Ruhr area, Germany, a location where multiple cohort studies are being conducted. Application of these different mod...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Correlation of air pollutants with land use and traffic measures in Tehran, Iran: A preliminary statistical analysis for land use regression modeling

Land use regression (LUR) models have been globally used to estimate long-term air pollution exposures. The present study aimed to analyze the association of different land use types and traffic measures with air pollutants in Tehran, Iran, as part of the future development of LUR models. Data of the particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) were extracted from...

متن کامل

Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 48 8  شماره 

صفحات  -

تاریخ انتشار 2014