Actomyosin ring driven cytokinesis in budding yeast
نویسندگان
چکیده
Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.
منابع مشابه
Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis.
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosi...
متن کاملCytokinesis in budding yeast: the relationship between actomyosin ring function and septum formation.
Cytokinesis in budding yeast is accomplished by the concerted action of actomyosin ring function and septum formation. The actomyosin ring is not essential for cell viability, but it is required for efficient cell division. Deletion of the actomyosin ring results in abnormal septum formation, and a delay in cytokinesis and cell separation. In contrast, septum formation is essential for cell via...
متن کاملDual Function of Cyk2, a cdc15/PSTPIP Family Protein, in Regulating Actomyosin Ring Dynamics and Septin Distribution
We previously showed that the budding yeast Saccharomyces cerevisiae assembles an actomyosin-based ring that undergoes a contraction-like size change during cytokinesis. To learn more about the biochemical composition and activity of this ring, we have characterized the in vivo distribution and function of Cyk2p, a budding yeast protein that exhibits significant sequence similarity to the cdc15...
متن کاملCell polarization and cytokinesis in budding yeast.
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signa...
متن کاملHof1 and Rvs167 Have Redundant Roles in Actomyosin Ring Function during Cytokinesis in Budding Yeast
The Hof1 protein (Homologue of Fifteen) regulates formation of the primary septum during cytokinesis in the budding yeast Saccharomyces cerevisiae, whereas the orthologous Cdc15 protein in fission yeast regulates the actomyosin ring by using its F-BAR domain to recruit actin nucleators to the cleavage site. Here we show that budding yeast Hof1 also contributes to actin ring assembly in parallel...
متن کامل