Role of pfkA and general carbohydrate catabolism in seed colonization by Enterobacter cloacae.

نویسندگان

  • D P Roberts
  • P D Dery
  • I Yucel
  • J Buyer
  • M A Holtman
  • D Y Kobayashi
چکیده

Enterobacter cloacae A-11 is a transposon mutant of strain 501R3 that was deficient in cucumber spermosphere colonization and in the utilization of certain carbohydrates (D. P. Roberts, C. J. Sheets, and J. S. Hartung, Can. J. Microbiol. 38:1128-1134, 1992). In vitro growth of strain A-11 was reduced or deficient on most carbohydrates that supported growth of strain 501R3 but was unaffected on fructose, glycerol, and all amino acids and organic acids tested. Colonization by strain A-11 was significantly reduced (P </= 0.05) for cucumber and radish seeds compared to that of strain 501R3, but colonization of pea, soybean, sunflower, and sweet corn seeds was not reduced. Pea seeds released several orders of magnitude more total carbohydrates and amino acids than cucumber and radish seeds and approximately 4,000-fold more fructose. Fructose was the only carbohydrate detected in the seed exudates which supported wild-type levels of in vitro growth of strain A-11. Soybean, sunflower, and sweet corn seeds also released significantly greater amounts of fructose and total carbohydrates and amino acids than cucumber or radish seeds. The exogenous addition of fructose to cucumber and radish seeds at quantities similar to the total quantity of carbohydrates released from pea seeds over 96 h increased the populations of strain A-11 to levels comparable to those of strain 501R3 in sterile sand. Molecular characterization of strain A-11 indicated that the mini-Tn5 kanamycin transposon was inserted in a region of the genome with significant homology to pfkA, which encodes phosphofructo kinase. A comparison of strain A-11 with Escherichia coli DF456, a known pfkA mutant, indicated that the nutritional loss phenotypes were identical. Furthermore, the pfkA homolog cloned from E. cloacae 501R3 complemented the nutritional loss phenotypes of both E. coli DF456 and E. cloacae A-11 and restored colonization by strain A-11 to near wild-type levels. These genetic and biochemical restoration experiments provide strong evidence that the quantities of reduced carbon sources found in seed exudates and the ability of microbes to use these compounds play important roles in the colonization of the spermosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of sdhA and pfkA and catabolism of reduced carbon during colonization of cucumber roots by Enterobacter cloacae.

We have been using a mutational approach to determine how plant-beneficial bacteria such as Enterobacter cloacae 501R3 obtain carbon and energy for colonization of subterranean portions of cucumber and other plants. Reduced carbon detected in cucumber root exudate consisted of 73.3 % amino acids, 22.2 % organic acids and 4.4 % carbohydrate. Ent. cloacae M2, a mini-Tn5 Km transposon mutant of st...

متن کامل

Importance of pfkA for rapid growth of Enterobacter cloacae during colonization of crop seeds.

Enterobacter cloacae A-11 is a prototrophic, glycolytic mutant of strain 501R3 with a single transposon insertion in pfkA. The populations of strain A-11 on cucumber and radish seeds were smaller than the populations of strain 501R3 in natural soil, but the populations of these two strains on pea, soybean, sunflower, and sweet corn seeds were similar (D. P. Roberts, P. D. Dery, I. Yucel, J. Buy...

متن کامل

Mutation of rpiA in Enterobacter cloacae decreases seed and root colonization and biocontrol of damping-off caused by Pythium ultimum on cucumber.

Strains of Enterobacter cloacae show promise as biocontrol agents for Pythium ultimum-induced damping-off on cucumber and other crops. E. cloacae A145 is a mini-Tn5 Km transposon mutant of strain 501R3 that was significantly reduced in suppression of damping-off on cucumber caused by P. ultimum. Strain A145 was deficient in colonization of cucumber, sunflower, and wheat seeds and significantly ...

متن کامل

Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres.

Differential protection of plants by Enterobacter cloacae was studied by investigating early sensing and response behavior of Pythium ultimum sporangia toward seeds in the presence or absence of E. cloacae. Ten percent of P. ultimum sporangia were activated within the first 30 min of exposure to cucumber seeds. In contrast, 44% of the sporangia were activated as early as 15 min after exposure t...

متن کامل

Pyruvate dehydrogenase activity is important for colonization of seeds and roots by Enterobacter cloacae

Enterobacter cloacae is a plant-beneficial bacterium that shows promise for suppression of damping-off of cucumber and other crops caused by Pythium ultimum. We have been using a mutational approach to determine the E. cloacae genes important in bacterial–plant and bacterial–pathogen interactions in the spermosphere and rhizosphere. E. cloacae M43 is a transposon mutant of E. cloacae 501R3 that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 65 6  شماره 

صفحات  -

تاریخ انتشار 1999