THE POLYNOMIAL REPRESENTATION OF THE TYPE An−1 RATIONAL CHEREDNIK ALGEBRA IN CHARACTERISTIC

نویسنده

  • YI SUN
چکیده

We study the polynomial representation of the rational Cherednik algebra of type An−1 with generic parameter in characteristic p for p | n. We give explicit formulas for generators for the maximal proper graded submodule, show that they cut out a complete intersection, and thus compute the Hilbert series of the irreducible quotient. Our methods are motivated by taking characteristic p analogues of existing characteristic 0 results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational and Trigonometric Degeneration of the Double Affine Hecke Algebra of Type A

We study a connection between the representation theory of the rational Cherednik algebra of GLn and the representation theory of the degenerate double affine Hecke algebra (the degenerate DAHA). We give an algebra embedding from the rational Cherednik algebra to the degenerate DAHA, and investigate the induction functor through this embedding. By this functor, the category O for the rational C...

متن کامل

Representations of rational Cherednik algebras of rank 1 in positive characteristic

Let Γ ⊂ SL2(C) be a finite subgroup, and r be the number of conjugacy classes of Γ. Let D be the algebra of polynomial differential operators in one variable with complex coefficients. In the paper [CBH98], CrawleyBoevey and Holland introduced an r-parameter family of algebras Ht,c1,...,cr−1 over C, which is a universal deformation of the semidirect product algebra CΓ ⋉ D. They also described t...

متن کامل

Computing Signatures for Representations of the Hecke and Cherednik Algebras

In this paper, we compute the signatures of the contravariant form on Specht modules for the cyclotomic Hecke algebra and compute the signature character of the contravariant form on the polynomial representation of the rational Cherenik algebra associated toG(r, 1, n).

متن کامل

Reducibility of the Polynomial Representation of the Degenerate Double Affine Hecke Algebra

In this note we determine the values of parameters c for which the polynomial representation of the degenerate double affine Hecke algebra (DAHA), i.e. the trigonometric Cherednik algebra, is reducible. Namely, we show that c is a reducibility point for the polynomial representation of the trigonometric Cherednik algebra for a root system R if and only if it is a reducibility point for the rati...

متن کامل

Cylindrical Combinatorics and Representations of Cherednik Algebras of Type A

We investigate the representation theory of the rational and trigonometric Cherednik algebra of type GLn by means of combinatorics on periodic (or cylindrical) skew diagrams. We introduce and study standard tableaux and plane partitions on periodic diagrams, and in particular, compute some generating functions concerning plane partitions, where Kostka polynomials and their level restricted gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015