Tight Bounds on Periodic Cell Configurations in Life

نویسندگان

  • David Buckingham
  • Paul B. Callahan
چکیده

This work was partially completed while Callahan was a postdoctoral assistant in the Institute for Theoretical Computer Science, ETH Z urich, Switzerland. Periodic configurations, or oscillators, occur in many cellular automata. In an oscillator, repeated applications of the automaton rules eventually restore the configuration to its initial state. This paper considers oscillators in Conway’s Life; analogous techniques should apply to other rules. Three explicit methods are presented to construct oscillators in Life while guaranteeing certain complexity bounds, leading to the existence of an infinite sequence Kn of oscillators of periods n = 58, 59, 60, . . . and uniformly bounded population, and an infinite sequence Dn of oscillators of periods n = 58, 59, 60, . . . and diameter bounded by b p log n, where b is a uniform constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential

We justify the validity of the discrete nonlinear Schrödinger equation for the tight-binding approximation in the context of the Gross–Pitaevskii equation with a periodic potential. Our construction of the periodic potential and the associated Wannier functions is based on the previous work [7], while our analysis involving energy estimates and Gronwall’s inequality addresses time-dependent loc...

متن کامل

More inequalities for Laplacian indices by way of majorization

The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...

متن کامل

On discriminativity of Zagreb indices

Zagreb indices belong to better known and better researched topological indices. We investigate here their ability to discriminate among benzenoid graphs and arrive at some quite unexpected conclusions. Along the way we establish tight (and sometimes sharp) lower and upper bounds on various classes of benzenoids.

متن کامل

On the edge geodetic and edge geodetic domination numbers of a graph

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

متن کامل

Complementary Periodic Structures for Miniaturization of Planar Antennas

In this paper various layered planar periodic structures which provide miniaturization of planar antennas are proposed and discussed. The proposed designs are based on two concepts, reactive impedance surfaces and complementary periodic structures. In the proposed structures, complementary periodic rings and slots are patterned on the intermediate boundaries of the dielectric layers. A patch an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1998