Large-scale network-level processes during entrainment

نویسندگان

  • Chrysa Lithari
  • Carolina Sánchez-García
  • Philipp Ruhnau
  • Nathan Weisz
چکیده

Visual rhythmic stimulation evokes a robust power increase exactly at the stimulation frequency, the so-called steady-state response (SSR). Localization of visual SSRs normally shows a very focal modulation of power in visual cortex and led to the treatment and interpretation of SSRs as a local phenomenon. Given the brain network dynamics, we hypothesized that SSRs have additional large-scale effects on the brain functional network that can be revealed by means of graph theory. We used rhythmic visual stimulation at a range of frequencies (4-30 Hz), recorded MEG and investigated source level connectivity across the whole brain. Using graph theoretical measures we observed a frequency-unspecific reduction of global density in the alpha band "disconnecting" visual cortex from the rest of the network. Also, a frequency-specific increase of connectivity between occipital cortex and precuneus was found at the stimulation frequency that exhibited the highest resonance (30 Hz). In conclusion, we showed that SSRs dynamically re-organized the brain functional network. These large-scale effects should be taken into account not only when attempting to explain the nature of SSRs, but also when used in various experimental designs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examination of turbulent entrainment‐mixing mechanisms using a combined approach

[1] Turbulent entrainment‐mixing mechanisms are investigated by applying a combined approach to the aircraft measurements of three drizzling and two nondrizzling stratocumulus clouds collected over the U.S. Department of Energy’s Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. Microphysical analysis shows that the inhomogene...

متن کامل

Exploring parameterization for turbulent entrainment‐mixing processes in clouds

[1] Different turbulent entrainment‐mixing processes (e.g., homogeneous and inhomogeneous) occur in clouds; accurate representation of these processes is critical for improving cloud‐related parameterizations in large‐scale models, but poorly understood and quantified. Using in situ aircraft observations over the U. S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plai...

متن کامل

Intrawave observations of sediment entrainment processes above sand ripples under irregular waves

[1] Measurements of intrawave sediment entrainment processes are reported above ripples under irregular waves generated in a large‐scale flume facility. The data consist of substantive observations of small‐scale processes collected at high spatial and temporal resolution under irregular wave forcing, typical of coastal environments. Acoustic measurements were made of water velocities, bed form...

متن کامل

Coastal Dynamics 2013 1127 DETAILED NUMERICAL INVESTIGATION OF THE THREE-DIMENSIONAL FLOW STRUCTURES UNDER BREAKING WAVES

The scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier-Stokes equations, in air and water, coupled with a dynamic subgrid scale turbulence model (Large Eddy Simulation, LES). An original numerical tool is used for the complete description of the plunging breaking processes including overturning, splas...

متن کامل

Analyses of a large-scale depositional clinoformal wedge along the Italian Adriatic coast

The processes controlling the formation of the late Holocene high-stand systems tract along the central Adriatic coast – a prograding clinoformal sediment wedge – have been diagnosed using a large-scale behavior-oriented numerical model. This model is based on time-averaged marine sediment dynamics, allowing it to represent processes acting over millennial time spans. River-derived sediment is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain Research

دوره 1635  شماره 

صفحات  -

تاریخ انتشار 2016