A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation
نویسندگان
چکیده
Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep.
منابع مشابه
The acoustic properties of snores.
This study was undertaken in an attempt to characterize the acoustic properties of snoring sounds in the time and frequency domains, and to correlate between these properties and the mechanical events underlying their production. Three experimental set-ups were used: 1) Dog model--six mongrel dogs, in which partial upper airway obstruction was created by an implanted supraglottic balloon. Flow,...
متن کاملThe acoustics of snoring.
Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathin...
متن کاملThe use of tracheal sounds for the diagnosis of sleep apnoea
Tracheal sounds have been the subject of many research studies. In this review, we describe the state of the art, original work relevant to upper airways obstruction during sleep, and ongoing research concerning the methods used when analysing tracheal sounds. Tracheal sound sensors are a simple and noninvasive means of measurement and are more reliable than other breathing sensors. Development...
متن کاملThe Finite Element Simulation of the Upper Airway of Patients with Moderate and Severe Obstructive Sleep Apnea Hypopnea Syndrome
Objectives To investigate the snoring modes of patients with Obstructive Sleep Apnea Hypopnea Syndrome and to discover the main sources of snoring in soft tissue vibrations. Methods A three-dimensional finite element model was developed with SolidEdge to simulate the human upper airway. The inherent modal simulation was conducted to obtain the frequencies and the corresponding shapes of the s...
متن کاملIncreased upper airway collapsibility in children with obstructive sleep apnea during wakefulness.
Upper airway collapsibility (UAC) is increased in children with sleep-disordered breathing (SDB), but during wakefulness, active neural processes preserve upper airway patency, such that measurement of upper airway dynamics using acoustic pharyngometry may contribute to diagnostic accuracy in snoring children. Upper airway cross-sectional area obtained from acoustic pharyngometry measurements w...
متن کامل