Using Dempster-Shafer Theory in Data Mining
نویسنده
چکیده
The origins of Dempster-Shafer theory (DST) go back to the work by Dempster (1967) who developed a system of upper and lower probabilities. Following this, his student Shafer (1976), in his book “A Mathematical Theory of Evidence” added to Dempster’s work, including a more thorough explanation of belief functions. In summary, it is a methodology for evidential reasoning, manipulating uncertainty and capable of representing partial knowledge (Haenni & Lehmann, 2002; Kulasekere, Premaratne, Dewasurendra, Shyu, & Bauer, 2004; Scotney & McClean, 2003). The perception of DST as a generalization of Bayesian theory (Shafer & Pearl, 1990), identifies its subjective view, simply, the probability of an event indicates the degree to which someone believes it. This is in contrast to the alternative frequentist view, understood through the “Principle of Insufficient Reason”, whereby in a situation of ignorance a Bayesian approach is forced to evenly allocate subjective (additive) probabilities over the frame of discernment. The development of DST includes analogies to rough set theory (Wu, Leung, & Zhang, 2002) and its operation within neural and fuzzy environments (Binaghi, Gallo, & Madella, 2000; Yang, Chen, & Wu, 2003). Techniques based around belief decision trees (Elouedi, Mellouli, & Smets, 2001), multi-criteria decision making (Beynon, 2002) and non-parametric regression (Petit-Renaud & Denœux, 2004), utilize DST to allow analysis in the presence of uncertainty and imprecision. This is demonstrated with the CaRBS (Classification and Ranking Belief Simplex) system for object classification, see Beynon (2005).
منابع مشابه
A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملREGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کاملمحاسبه فاصله عدم قطعیت بر پایه آنتروپی شانون و تئوری دمپستر-شافر از شواهد
Abstract Dempster Shafer theory is the most important method of reviewing uncertainty for information system. This theory as introduced by Dempster using the concept of upper and lower probabilities extended later by Shafer. Another important application of entropy as a basic concept in the information theory can be used as a uncertainty measurement of the system in specific situation In th...
متن کاملA NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY
In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...
متن کاملMultimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion....
متن کاملA Study on Properties of Dempster-Shafer Theory to Probability Theory transformations
In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this...
متن کامل