Comparative Study of Genetic Algorithm Performed in a Single Generation for two Different Fitness Functions Technique f(x) = x^2 and f(x) = x^2+1

نویسندگان

  • Dipanjan Kumar Dey
  • Kumara Sastry
  • David Goldberg
  • Alan Holland
  • Manju Sharma
چکیده

A genetic algorithm is one of a class of algorithms that searches a solution space for the optimal solution to a problem. First part of this work consists of basic information about Genetic algorithm like what are Individual, Population, Crossover, Genes, Binary Encoding, Flipping, Crossover probability, Mutation probability. What is it used for, what is their aim. In this article the methods of selection, crossover and mutation are specified. In the second part of this paper providing two different fitness functions f(x) = x^2 and f(x) = x^2+1.Solving maximizing problems for two different fitness functions f(x) = x^2 and f(x) = x^2+1 using genetic algorithm in a single generation. A single generation of a Genetic algorithm is performed here with encoding, selection, crossover and mutation. In this paper shown the best string from initial population is same (identical) for two different fitness functions f(x) = x^2 and f(x) = x^2+1.The purpose of this paper is to present a specific varying fitness function (multiple fitness function) technique. The author of this paper was among the first that proposed the different fitness function technique used in GA for selecting the best string.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number 17

A genetic algorithm is one of a class of algorithms that searches a solution space for the optimal solution to a problem. First part of this work consists of basic information about Genetic algorithm like what are Individual, Population, Crossover, Genes, Binary Encoding, Flipping, Crossover probability, Mutation probability. What is it used for, what is their aim. In this article the methods o...

متن کامل

Co-centralizing generalized derivations acting on multilinear polynomials in prime rings

‎Let $R$ be a noncommutative prime ring of‎ ‎characteristic different from $2$‎, ‎$U$ the Utumi quotient ring of $R$‎, ‎$C$ $(=Z(U))$ the extended centroid‎ ‎of $R$‎. ‎Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear‎ ‎polynomial over $C$ which is noncentral valued on $R$‎. ‎Suppose‎ ‎that $G$ and $H$ are two nonzero generalized derivations of $R$‎ ‎such that $a(H(f(x))f(x)-f(x)G(f(x)))in ...

متن کامل

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015