Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications
نویسندگان
چکیده
A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications.
منابع مشابه
cn Nanofabrication , effects and sensors based on micro - electro - mechanical systems technology
In this paper, our investigation of nanofabrication, effects and sensors based on the traditional microelectro-mechanical systems (MEMS) technology has been reviewed. Thanks to high selectivity in anisotropic etching and sacrificial layer processes, nanostructures such as nanobeams and nanowires have been fabricated in top-down batch process, in which beams with thickness of only 20 nm and nano...
متن کاملNanofabrication, effects and sensors based on micro-electro-mechanical systems technology.
In this paper, our investigation of nanofabrication, effects and sensors based on the traditional micro-electro-mechanical systems (MEMS) technology has been reviewed. Thanks to high selectivity in anisotropic etching and sacrificial layer processes, nanostructures such as nanobeams and nanowires have been fabricated in top-down batch process, in which beams with thickness of only 20 nm and nan...
متن کاملTip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications.
Graphene nanoribbons (GNRs) have promising applications in future nanoelectronics, chemical sensing and electrical interconnects. Although there are quite a few GNR nanofabrication methods reported, a rapid and low-cost fabrication method that is capable of fabricating arbitrary shapes of GNRs with good-quality is still in demand for using GNRs for device applications. In this paper, we present...
متن کاملNanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication.
Nanofluidic channels have promising applications in biomolecule manipulation and sensing. While several different methods of fabrication have been demonstrated for nanofluidic channels, a rapid, low-cost fabrication method that can fabricate arbitrary shapes of nanofluidic channels is still in demand. Here, we report a tip-based nanofabrication (TBN) method for fabricating nanofluidic channels ...
متن کاملDisordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection
We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite...
متن کامل