A biomimetic reach and grasp approach for mechanical hands
نویسندگان
چکیده
Reach and grasp are the two key functions of human prehension. The Central Nervous System controls these two functions in a separate but interdependent way. The choice between different solutions to reach and grasp an object – provided by multiple and redundant degrees of freedom (dof) – depends both on the properties and on the use (affordance) of the object to be manipulated. This same control paradigm, i.e. subdivision of prehension into reach and grasp as well as the corresponding multimodal (sensory/motor) information fusion schemes, can also be applied to amechanical hand carried by a robotic arm. The robotic armwill then be responsible for positioning the hand with respect to the object, and the hand will then grasp and manipulate the object. In this article, we present a biomimetic sensory–motor control scheme in the aim of providing an object-dependent and intelligent reach and grasp ability to such systems. The proposed model is based on a multi-network architecture which incorporates multiple Matching Units trained by a statistical learning algorithm (LWPR). Matching Units perform a multimodal signal integration by correlating sensory and motor information analogous to that observed in cerebral neuronal networks. The simulated network of multiple Matching Units provided estimations of object-dependent 5-finger grasp configurations with endpoint positional errors in the order of a few millimeters. For validation, these estimations were then applied to the control of movement kinematics on an experimental robot composed of a 6 dof robot arm carrying a 16 dof mechanical 4-finger hand. Precision of the kinematics control was such that successful reach, grasp and lift was obtained in all the tests. © 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Learning and Inference of Dexterous Grasps for Novel Objects with Underactuated Hands
Recent advances have been made in learning of grasps for fully actuated hands. A typical approach learns the target locations of finger links on the object. When a new object must be grasped, new finger locations are generated, and a collision free reach-to-grasp trajectory is planned. This assumes a collision free trajectory to the final grasp. This is not possible with underactuated hands, wh...
متن کاملManufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering
Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation. Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned ...
متن کاملBiomimetic Design and Development of a Prosthetic Hand: Prototype 1.0
This paper reports the biomimetic design and development of a prototype of extreme upper limb prosthesis. The motivation for developing a new prosthetic hand is provided by the fact that low functionality and low controllability are the most important reasons why amputees do not use their prosthetic hands. In addition, although multifingered hand prosthesis has appeared in the market, the cost ...
متن کاملPassive Non-Prehensile Manipulation of a Specific Object on Predictable Helix Path Based on Mechanical Intelligence
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with and without grasp. The aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 60 شماره
صفحات -
تاریخ انتشار 2012