The effect of aging on crack-growth resistance and toughening mechanisms in human dentin.

نویسندگان

  • Kurt J Koester
  • Joel W Ager
  • Robert O Ritchie
چکیده

Crack-growth experiments in human dentin have been performed in situ in an environmental scanning electron microscope to measure, for the first time, the crack-growth resistance curve (R-curve) for clinically relevant (<250 microm) crack extensions and to simultaneously identify the salient toughening mechanisms. "Young" dentin from donors 19-30 years in age and "aged" dentin from donors 40-70 years in age were evaluated. The "young" group had 0-4% of its tubules filled with apatite; the "aged" group was subdivided into "opaque" with 12-32% filled tubules and "transparent" with 65-100% filled tubules. Although crack-initiation toughnesses were similar, the crack-growth resistance of "young" dentin was higher by about 40% compared to "aged" dentin. Mechanistically, this behavior is interpreted in terms of three phenomena: (i) gross crack deflection of the growing crack, (ii) microcracks which initiated at unfilled tubules in the high stress region in the vicinity of a propagating crack (no microcracks formed at filled tubules), and (iii) crack propagation which followed a local trajectory through unfilled tubules and deflected around filled tubules. The higher toughness of the "young" dentin was related to enhanced microcracking (at unfilled tubules) ahead of the growing crack, which (i) shields the crack by activating multiple crack tips and by reducing the local stress intensity through crack deflection and (ii) leads to the formation of crack bridges from "uncracked ligaments" due to the incomplete coalescence of these microcracks with the main crack tip. With age, the role of these toughening mechanisms was diminished primarily to the lower fraction of unfilled, and hence microcracked, tubules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aging and Fracture of Human Cortical Bone and Tooth Dentin

Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function pr...

متن کامل

Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration.

Few studies have focused on a description of the fracture toughness properties of dentin in terms of resistance-curve (R-curve) behavior, i.e., fracture resistance increasing with crack extension, particularly in light of the relevant toughening mechanisms involved. Accordingly, in the present study, fracture mechanics based experiments were conducted on elephant dentin in order to determine su...

متن کامل

The importance of microstructural variations on the fracture toughness of human dentin.

The crack growth resistance of human dentin was characterized as a function of relative distance from the DEJ and the corresponding microstructure. Compact tension specimens were prepared from the coronal dentin of caries-free 3rd molars. The specimens were sectioned from either the outer, middle or inner dentin. Stable crack extension was achieved under Mode I quasi-static loading, with the cr...

متن کامل

On the origin of the toughness of mineralized tissue: microcracking or crack bridging?

Two major mechanisms that could potentially be responsible for toughening in mineralized tissues, such as bone and dentin, have been identified-microcracking and crack bridging. While evidence has been reported for both mechanisms, there has been no consensus thus far on which mechanism plays the dominant role in toughening these materials. In the present study, we seek to present definitive ex...

متن کامل

Contributions of aging to the fatigue crack growth resistance of human dentin.

An evaluation of the fatigue crack resistance of human dentin was conducted to identify the degree of degradation that arises with aging and the dependency on tubule orientation. Fatigue crack growth was achieved in specimens of coronal dentin through application of Mode I cyclic loading and over clinically relevant lengths (0 ≤ a ≤ 2 mm). The study considered two directions of cyclic crack gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 29 10  شماره 

صفحات  -

تاریخ انتشار 2008