DNA polymerases from bakers' yeast.
نویسنده
چکیده
Two DNA polymerases are present in extracts of commercial bakers' yeast and wild type Saccharomyces cerevisiae grown aerobically to late log phase. Yeast DNA polymerase I and yeast DNA polymerase II can be separated by DEAE-cellulose, hydroxylapatite, and denatured DNA-cellulose chromatography from the postmitochondrial supernatants of yeast lysates. The yeast polymerases are both of high molecular weight (greater than 100,000) but are clearly separate species by the lack of immunological cross-reactivity. Analysis of associated enzyme activities and other reaction properties of yeast DNA polymerases provides additional evidence for distinguishing the two species. Enzyme I has no associated nuclease activity but does carry out pyrophosphate exchange and pyrophosphorolysis reactions, and has an associated 3'-exonuclease activity. Enzyme I does not degrade deoxynucleoside triphosphates and cannot utilize a mismatched template. Enzyme II does carry out a template-dependent deoxynucleoside triphosphate degradation reaction and can excise mismatched 3'-nucleotides from suitable template systems. Earlier studies have shown that both Enzyme I and Enzyme II are inhibited by N-ethylmaleimide. The yeast enzymes are not identical to any known eukaryotic or prokaryotic DNA polymerases. In general, Enzyme I appears to be most similar to eukaryotic DNA polymerase alpha and Ezyme II exhibits properties of prokaryotic DNA polymerases II and III.
منابع مشابه
Improving the freeze tolerance of bakers' yeast by loading with trehalose.
We examined the freeze tolerance of bakers' yeast loaded with exogenous trehalose. Freeze-tolerant and freeze-sensitive compressed bakers' yeast samples were soaked at several temperatures in 0.5 M and 1 M trehalose and analyzed. The intracellular trehalose contents in both types of bakers' yeast increased with increasing soaking period. The initial trehalose-accumulation rate increased with in...
متن کاملPhotoreactivation of Transforming DNA by an Enzyme from Bakers' Yeast
Ultraviolet-inactivated Hemophilus influenzae transforming DNA recovers its activity when mixed with cell-free extracts of bakers' yeast and exposed to visible light. The active agent in the extract is not used up in the reaction, and purification has not separated it into more than one non-dialyzable component. It differs from the agent in Escherichia coli extract, which produces very similar ...
متن کاملEnhanced Antimicrobial Effect of Yeast Mediated Silver Nanoparticles Synthesized From Baker’s Yeast
In recent science Nanotechnology is a burning field for the researchers. To meet the requirements and growing technological demand, there is a need to develop an eco-friendly approach. In the present effort, the baker’s yeast (Saccharomyces cerevisiae) has been taken in order to assess its potential as putative candidate fungal genera for the transformation of silver nanoparticles. Silve...
متن کاملTranscription in yeast: alpha-amanitin sensitivity and other properties which distinguish between RNA polymerases I and III.
Three peaks of DNA-dependent RNA polymerase (RNA nucleotidyltransferase) activity are resolved by chromatography of a sonicated yeast cell extract on DEAE-Sephadex. The enzymes, which are named RNA polymerases I, II, and III in order of elution, show similar catalytic properties to the vertebrate class I, class II, and class III RNA polymerases, respectively. Yeast RNA polymerase III is readily...
متن کاملEfficient treatment of baker’s yeast wastewater using aerobic membrane bioreactor
A membrane bioreactor (MBR) system based on a dead-end immersed hollow fiber membrane and filamentous fungus Aspergillus oryzae were used for treatment of baker’s yeast wastewater. The fungus was adapted to the wastewater in the bioreactor for two weeks before starting the continuous process. Average organic loading rate of 4.2 kg COD/m3.d was entered the bioreactor. MBR system was able to redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 252 6 شماره
صفحات -
تاریخ انتشار 1977