Spherical wave theory applied to mobile radio channel modeling, synthesis and emulation

نویسندگان

  • Afroza Khatun
  • Tommi Laitinen
  • Veli-Matti Kolmonen
  • Katsuyuki Haneda
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Afroza Khatun Name of the doctoral dissertation Spherical wave theory applied to mobile radio channel modeling, synthesis and emulation Publisher School of Electrical Engineering Unit Department of Radio Science and Engineering Series Aalto University publication series DOCTORAL DISSERTATIONS 205/2014 Field of research Radio Engineering Manuscript submitted 9 June 2014 Date of the defence 12 December 2014 Permission to publish granted (date) 7 November 2014 Language English Monograph Article dissertation (summary + original articles) Abstract The future mobile communication systems will provide increasing data rates to satisfy the service requirements of the users. This means that the radio performance of especially the mobile terminals becomes more important and has to be as good as possible. Thus, it is very important to be able to evaluate the performance of the antennas of the mobile terminals in a realistic way. This thesis deals with practical and theoretically justified ways to describe both the field environment and the radiated fields of mobile terminal antennas and antenna systems using spherical wave theory. In this thesis, advanced measurement methods that facilitate the radio wave propagation channel as well as mobile terminal antenna characterization are developed.The future mobile communication systems will provide increasing data rates to satisfy the service requirements of the users. This means that the radio performance of especially the mobile terminals becomes more important and has to be as good as possible. Thus, it is very important to be able to evaluate the performance of the antennas of the mobile terminals in a realistic way. This thesis deals with practical and theoretically justified ways to describe both the field environment and the radiated fields of mobile terminal antennas and antenna systems using spherical wave theory. In this thesis, advanced measurement methods that facilitate the radio wave propagation channel as well as mobile terminal antenna characterization are developed. The research in this thesis contributes to three key areas: (1) channel-independent antenna characterization and performance assessment, (2) degrees-of-freedom (DoF) of propagation channels and (3) over-the-air (OTA) testing. In the first part of this thesis, theoretical considerations of the spherical wave expansion (SWE) for the antenna array configuration on the cubical surface for estimating the propagation channel and measuring the antenna radiation through a near-field to far-field transformation (NF-FF) are studied. A novel technique, azimuthal mode decomposition (AMD) for the reduction of the computational burden is presented for both applications using the cubical array configuration. In second part, the proposed antenna configuration is applied to the estimation of the degrees of freedom (DoF) in spatial multipath channels. In multi-antenna systems, such as multipleinput multiple-output (MIMO), multiple-input single-output (MISO), this DoF provides the number of antenna elements on the aperture for efficiency improvement of the system performance by utilizing the spatial transmission, e.g., diversity and multiplexing. In the third part of this thesis, multi-probe based MIMO over-the-air (OTA) testing is described for the performance evaluation of multi-antenna systems. The related uncertainties of such testing, for instance, the required number of probes, optimum probe placement and the influence of the probe polarization are investigated in theory and practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation Prediction Model for Land Mobile Communication in Microcellular Environment

The propagation channel is the principal contributor to many of the problems and limitations that degrades the performance of mobile radio systems. One obvious example is multipath propagation which is a major characteristic of the mobile radio channels, which severely affects the performance of digital systems by reducing the carrier-to-interference ratio. Thus accurate characterization of the...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

Radio-Tracer A Tool for Deterministic Simulation of Wave Propagation

Ray-tracing and UTD (Uniform Theory of Diffraction) techniques are already widely applied to site-specific radio propagation modeling for wireless applications. This paper briefly presents the software tool Radio-Tracer that uses efficient algorithms to calculate dynamically the exact visibility graph of an environment taking into account the position of both transmitter and receivers and the m...

متن کامل

Thermal modeling of mini-channel and laminated Types evaporator in mobile air conditioning system

In this paper, mini-channel type evaporator which is new in mobile air conditioning (MAC) or automotive air conditioning (AAC) systems is thermally modeled. The performance of mini-channel evaporator is also compared with the laminated evaporator which is being currently used in automotive industries. The mini-channel evaporator was constructed of two rows of parallel flow mini-channel tubes...

متن کامل

Real-Time Radio Wave Propagation for Mobile Ad-Hoc Network Emulation Using GPGPUs

The accurate simulation and emulation of mobile radios requires the computation of RF propagation path loss in order to accurately predict connectivity and signal interference. There are many algorithms available for computing the RF propagation path loss between wireless devices including the LongleyRice model, the transmission line matrix (TLM), ray-tracing, and the parabolic equation method....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014