Acceleration element for femtosecond electron pulse compression.

نویسندگان

  • Bao-Liang Qian
  • Hani E Elsayed-Ali
چکیده

An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results show that the electron pulse front and pulse duration can be improved by compensating for the effects of space charge and the initial energy spread of photoelectrons with a Lambertian angular distribution. Depending on the design parameters and the shape of the electron pulse, for a femtosecond electron gun with an electron energy of 30 keV, 10(3) electrons per pulse, and an electron drift length of 40 cm, the electron pulse duration can be reduced from 550 to 200 fs when using a compensating cavity with an average radius of 1.7 and 5.6 cm in length. Electron pulses shorter than 200 fs can be achieved if the length of the drift region is reduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and synchronization of electron beams from RF photoinjector/compressor systems for ultra-fast applications

The RF photoinjector, when coupled with a magnetic pulse compression system, is now a ubiquitous tool for production of sub-picosecond electron beam pulses which are to be used in advanced accelerator and light source experiments. As the time-scale for both pulse lengths and synchronization to external systems approaches the femtosecond level, a clear understanding of the longitudunal dynamics ...

متن کامل

Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression.

We report the first experimental demonstration of longitudinal compression of laser-accelerated electron pulses. Accelerated by a femtosecond laser pulse with an intensity of 10¹⁸ W/cm², an electron pulse with an energy of around 350 keV and a relative momentum spread of about 10⁻² was compressed to a 500-fs pulse at a distance of about 50 cm from the electron source by using a magnetic pulse c...

متن کامل

Simulations of Racetrack Microtron for Acceleration of Picosecond Electron Pulse

Low emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by inverse Compton scattering, and pulse radiolysis, etc. In order to produce the low emittance sub-picosecond electron pulses, we are developing a compact racetrack microtron (RTM) with a new 5 MeV injection system adopting an laser...

متن کامل

High current table-top setup for femtosecond gas electron diffraction

We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges ...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 65 4 Pt 2B  شماره 

صفحات  -

تاریخ انتشار 2002