Tunable GMM Kernels

نویسنده

  • Ping Li
چکیده

The recently proposed “generalized min-max” (GMM) kernel [9] can be efficiently linearized, with direct applications in large-scale statistical learning and fast near neighbor search. The linearized GMM kernel was extensively compared in [9] with linearized radial basis function (RBF) kernel. On a large number of classification tasks, the tuning-free GMM kernel performs (surprisingly) well compared to the best-tuned RBF kernel. Nevertheless, one would naturally expect that the GMM kernel ought to be further improved if we introduce tuning parameters. In this paper, we study three simple constructions of tunable GMM kernels: (i) the exponentiatedGMM (or eGMM) kernel, (ii) the powered-GMM (or pGMM) kernel, and (iii) the exponentiatedpowered-GMM (epGMM) kernel. The pGMM kernel can still be efficiently linearized by modifying the original hashing procedure for the GMM kernel. On about 60 publicly available classification datasets, we verify that the proposed tunable GMM kernels typically improve over the original GMM kernel. On some datasets, the improvements can be astonishingly significant. For example, on 11 popular datasets which were used for testing deep learning algorithms and tree methods, our experiments show that the proposed tunable GMM kernels are strong competitors to trees and deep nets. The previous studies [5, 7] developed tree methods including “abc-robust-logitboost” and demonstrated the excellent performance on those 11 datasets (and other datasets), by establishing the second-order tree-split formula and new derivatives for multiclass logistic loss. Compared to tree methods like “abc-robust-logitboost” (which are slow and need substantial model sizes), the tunable GMM kernels produce largely comparable results. We hope our introduction of tunable kernels would offer practitioners the flexibility of choosing appropriate kernels and methods for large-scale search and learning for their specific applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nystrom Method for Approximating the GMM Kernel

The GMM (generalized min-max) kernel was recently proposed [5] as a measure of data similarity and was demonstrated effective in machine learning tasks. In order to use the GMM kernel for large-scale datasets, the prior work resorted to the (generalized) consistent weighted sampling (GCWS) to convert the GMM kernel to linear kernel. We call this approach as “GMM-GCWS”. In the machine learning l...

متن کامل

Constructing the Discriminative Kernels Using GMM for Text-Independent Speaker Identification

In this paper, a class of GMM-based discriminative kernels is proposed for speaker identification. We map an utterance vector into a matrix by finding the sequence of components, which have the maximum likelihood in the GMM for the all frame vectors. And the weights matrix was used, which were got by the GMM's parameters. Then the SVMs are used for classification. A one-versus-rest fashion is u...

متن کامل

Linear and non linear kernel GMM supervector machines for speaker verification

This paper presents a comparison between Support Vector Machines (SVM) speaker verification systems based on linear and non linear kernels defined in GMM supervector space. We describe how these kernel functions are related and we show how the nuisance attribute projection (NAP) technique can be used with both of these kernels to deal with the session variability problem. We demonstrate the imp...

متن کامل

Exploring similarity-based classification of larynx disorders from human voice

In this paper identification of laryngeal disorders using cepstral parameters of human voice is researched. Mel-frequency cepstral coefficients (MFCCs), extracted from audio recordings of patient’s voice, are further approximated, using various strategies (sampling, averaging, and clustering by Gaussian mixture model). The effectiveness of similarity-based classification techniques in categoriz...

متن کامل

Kernel combination for SVM speaker verification

We present a new approach to construct kernels used on support vector machines for speaker verification. The idea is to learn new kernels by taking linear combination of many kernels such as the Generalized Linear Discriminant Sequence kernels (GLDS) and Gaussian Mixture Models (GMM) supervector kernels. In this new linear kernel combination, the weights are speaker dependent rather than univer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.02046  شماره 

صفحات  -

تاریخ انتشار 2017