Computing the intersections of three conics according to their Jacobian curve

نویسندگان

  • Ruyong Feng
  • Li-Yong Shen
چکیده

Article history: Received 9 April 2014 Accepted 3 June 2015 Available online 17 June 2015

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum weight codewords in dual Algebraic-Geometric codes from the Giulietti-Korchmáros curve

In this paper we investigate the number of minimum weight codewords of some dual AlgebraicGeometric codes associated with the Giulietti-Korchmáros maximal curve, by computing the maximal number of intersections between the Giulietti-Korchmáros curve and lines, plane conics and plane cubics.

متن کامل

On the Hermitian curve and its intersections with some conics

We classify completely the intersections of the Hermitian curve with parabolas in the affine plane. To obtain our results we employ well-known algebraic methods for finite fields and geometric properties of the curve automorphisms. In particular, we provide explicit counting formulas that have also applications to some Hermitian codes.

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

The Offset to an Algebraic Curve and an Application to Conics

Curve offsets are important objects in computer-aided design. We study the algebraic properties of the offset to an algebraic curve, thus obtaining a general formula for its degree. This is applied to computing the degree of the offset to conics. We also compute an implicit equation of the generalised offset to a conic by using sparse resultants and the knowledge of the degree of the implicit e...

متن کامل

Exact, efficient, and complete arrangement computation for cubic curves

The Bentley-Ottmann sweep-line method can compute the arrangement of planar curves, provided a number of geometric primitives operating on the curves are available. We discuss the reduction of the primitives to the analysis of curves and curve pairs, and describe efficient realizations of these analyses for planar algebraic curves of degree three or less. We obtain a complete, exact, and effici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2016