Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study.
نویسندگان
چکیده
The effect of drainage front morphology on gaseous diffusion through partially saturated porous media is analyzed using the lattice Boltzmann method (LBM). Flow regimes for immiscible displacement in porous media have been characterized as stable displacement, capillary fingering, and viscous fingering. The dominance of a flow regime is associated with the relative magnitudes of gravity, viscous, and capillary forces, quantifiable via the Bond number Bo, capillary number Ca, and their difference, Bo-Ca . Forced drainage from an initially saturated two-dimensional (2D) porous medium was simulated and the resulting flow patterns were analyzed and compared with theoretical predictions and experimental results. The LBM simulations reproduced expected flow morphologies for a range of drainage velocities and gravitational forces (i.e., a range of capillary and Bond numbers). Furthermore, measures of drainage front width as a function of the dimensionless difference Bo-Ca correspond well with scaling laws derived from percolation theory. Effects of flow morphology on residual fluid entrapment and gaseous diffusion were assessed by running LBM diffusion simulations through the partially saturated domain for a range of water contents. The effective diffusion coefficient as a function of water content was estimated for three regimes: stable drainage front, capillary fingering, and viscous fingering. Significant reductions in gaseous diffusion coefficient were found for viscous fingering relative to stable displacement, and to a lesser extent for capillary fingering, indicating that wetting phase distribution with a high degree of fingering in the 2D domain severely restricts connectivity of gas diffusion pathways through the medium. The study lends support for the use of LBM in design and management of fluids in porous media under variable gravity, and enhances the understanding of the role of dynamic fluid behavior on macroscopic transport properties of partially saturated porous media.
منابع مشابه
Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods.
Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents fo...
متن کاملLattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell
In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملUsing Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel
A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...
متن کاملGas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability
This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 74 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2006