In vitro and biodistribution examinations of Tc-99m-labelled doxorubicin-loaded nanoparticles.
نویسندگان
چکیده
BACKGROUND Nanoparticles represent promising drug carrier systems. In the case of cytostatics such as doxorubicin, carrier colloid systems as human serum albumin (HSA) nanoparticles, may increase their therapeutic efficiency and decrease their side-effects (toxicity) and any potential multidrug resistance. In the present study, doxorubicin, as a widely used antineoplastic agent, was incorporated into the matrix of human serum albumin and three different particle-sized doxorubicin-loaded HSA nanoparticles were prepared, using a previously described desolvation method. Our objective was to find out if different particle sizes of colloid carriers can allow regarding the given cytostatic agent. MATERIAL AND METHODS The three prepared nanoparticles were labelled using technetium (Tc-99m) and were tested for their physicochemical colloidal quality, fluctuations, and radiochemical stability. Biodistribution of different-sized radiolabelled colloids were determined by means of scintigraphic imaging studies in healthy male Wistar rats. Images were taken by gamma camera at several times and organ uptakes were estimated by quantitative ROI analysis. RESULTS In vitro measurements showed that more than 95% of doxorubicin proportion was permanently adsorbed to human serum albumin. Radiolabelled doxorubicin-loaded particles had high-degree and durable labelling efficiency and particle size stability. Biodistribution results had a close correlation to earlier described results of radiocolloids in similar particle size ranges. In vivo examinations verified that colloid carriers have insignificant size fluctuations after an intravenous application and they show the proper distribution according to their particle size. CONCLUSIONS Our investigations verified that different and stable particle sizes make drug carrier HSA nanoparticles possible to apply different drug targeting in a potential clinical use.
منابع مشابه
Biodistribution of Tc-99m Labeled Isoniazid Solid Lipid Nanoparticles in Wistar Rats
In this study Isoniazid (INH) as one of the first line drugs in treatment of Tuberculosis was investigated to be loaded in Solid Lipid Nanoparticles (SLNs) for reducing hepatotoxicity as well as prolonging drug release. High shear homogenization method was performed to prepare INH SLNs. To compare biodistribution of INH before and after loading in SLNs, INH was labeled by Technetium 99 (Tc99) a...
متن کاملBiodistribution of Tc-99m Labeled Isoniazid Solid Lipid Nanoparticles in Wistar Rats
In this study Isoniazid (INH) as one of the first line drugs in treatment of Tuberculosis was investigated to be loaded in Solid Lipid Nanoparticles (SLNs) for reducing hepatotoxicity as well as prolonging drug release. High shear homogenization method was performed to prepare INH SLNs. To compare biodistribution of INH before and after loading in SLNs, INH was labeled by Technetium 99 (Tc99) a...
متن کاملAdministration of 99mTc-DTPA in combination with doxorubicin alters the radiopharmaceutical biodistribution in rats
Introduction:Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent used as a radiopharmaceutical compound, 99mTc-DTPA, for renography. Doxorubicin (DOX) on the other hand is an effective chemotherapy drug used to treat a variety of solid malignancies. Both 99mTc-DTPA and DOX may be used in close succession in patients undergoing DOX based chemoth...
متن کاملBiodistribution of Amikacin Solid Lipid Nanoparticles after Pulmonary Delivery
The main purpose of the present work was studying the biodistribution of amikacin solid lipid nanoparticles (SLNs) after pulmonary delivery to increase its concentration in the lungs for treatment of cystic fibrosis lung infections and also providing a new method for clinical application of amikacin. To achieve this aim, (99m)Tc labelled amikacin was loaded in cholesterol SLNs and after in vitr...
متن کاملPreparation and preliminary biological evaluation of novel (99m)Tc-labelled thymidine analogs as tumor imaging agents.
Two kinds of novel thymidine derivatives, N-thymidine-yl-N′-methyl-N′-{N′′-[2-sulfanyl-(ethylamino)acetyl]-2-aminoethylsulfanyl-1-hexanamide}-ethanediamine (TMHEA) and N-thymidine-yl-N′-methyl-N′-{N′′-[2-sulfanyl-(ethylamino)acetyl]-2-aminoethylsulfanyl-1-hexanamide}-hexanediamine (TMHHA) were prepared and successfully labeled with (99m)Tc in high labeling yields. The in vitro stability and in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nuclear medicine review. Central & Eastern Europe
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2011