Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation.

نویسندگان

  • Kathrin Meyer
  • Julien Marquis
  • Judith Trüb
  • Rachel Nlend Nlend
  • Sonia Verp
  • Marc-David Ruepp
  • Hans Imboden
  • Isabelle Barde
  • Didier Trono
  • Daniel Schümperli
چکیده

In spinal muscular atrophy (SMA), the leading genetic cause of early childhood death, the survival motor neuron 1 gene (SMN1) is deleted or inactivated. The nearly identical SMN2 gene has a silent mutation that impairs the utilization of exon 7 and the production of functional protein. It has been hypothesized that therapies boosting SMN2 exon 7 inclusion might prevent or cure SMA. Exon 7 inclusion can be stimulated in cell culture by oligonucleotides or intracellularly expressed RNAs, but evidence for an in vivo improvement of SMA symptoms is lacking. Here, we unambiguously confirm the above hypothesis by showing that a bifunctional U7 snRNA that stimulates exon 7 inclusion, when introduced by germline transgenesis, can efficiently complement the most severe mouse SMA model. These results are significant for the development of a somatic SMA therapy, but may also provide new means to study pathophysiological aspects of this devastating disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatic Therapy of a Mouse SMA Model with a U7 snRNA Gene Correcting SMN2 Splicing

Spinal Muscular Atrophy is due to the loss of SMN1 gene function. The duplicate gene SMN2 produces some, but not enough, SMN protein because most transcripts lack exon 7. Thus, promoting the inclusion of this exon is a therapeutic option. We show that a somatic gene therapy using the gene for a modified U7 RNA which stimulates this splicing has a profound and persistent therapeutic effect on th...

متن کامل

Restoration of Full-Length SMN Promoted by Adenoviral Vectors Expressing RNA Antisense Oligonucleotides Embedded in U7 snRNAs

BACKGROUND Spinal Muscular Atrophy (SMA) is an autosomal recessive disease that leads to specific loss of motor neurons. It is caused by deletions or mutations of the survival of motor neuron 1 gene (SMN1). The remaining copy of the gene, SMN2, generates only low levels of the SMN protein due to a mutation in SMN2 exon 7 that leads to exon skipping. METHODOLOGY/PRINCIPAL FINDINGS To correct S...

متن کامل

An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects

A significant proportion of disease-causing mutations affect precursor-mRNA splicing, inducing skipping of the exon from the mature transcript. Using F9 exon 5, CFTR exon 12 and SMN2 exon 7 models, we characterized natural mutations associated to exon skipping in Haemophilia B, cystic fibrosis and spinal muscular atrophy (SMA), respectively, and the therapeutic splicing rescue by using U1 small...

متن کامل

Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.

Most mutations in the dystrophin gene create a frameshift or a stop in the mRNA and are associated with severe Duchenne muscular dystrophy. Exon skipping that naturally occurs at low frequency sometimes eliminates the mutation and leads to the production of a rescued protein. We have achieved persistent exon skipping that removes the mutated exon on the dystrophin messenger mRNA of the mdx mous...

متن کامل

Therapeutic activity of modified U1 core spliceosomal particles

Modified U1 snRNAs bound to intronic sequences downstream of the 5' splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2009