Computational topology and normal surfaces: Theoretical and experimental complexity bounds
نویسندگان
چکیده
In three-dimensional computational topology, the theory of normal surfaces is a tool of great theoretical and practical significance. Although this theory typically leads to exponential time algorithms, very little is known about how these algorithms perform in “typical” scenarios, or how far the best known theoretical bounds are from the real worstcase scenarios. Here we study the combinatorial and algebraic complexity of normal surfaces from both the theoretical and experimental viewpoints. Theoretically, we obtain new exponential lower bounds on the worst-case complexities in a variety of settings that are important for practical computation. Experimentally, we study the worst-case and average-case complexities over a comprehensive body of roughly three billion input triangulations. Many of our lower bounds are the first known exponential lower bounds in these settings, and experimental evidence suggests that many of our theoretical lower bounds on worst-case growth rates may indeed be asymptotically tight.
منابع مشابه
1 4 N ov 2 01 2 Computational topology and normal surfaces : Theoretical and experimental complexity bounds ∗
In three-dimensional computational topology, the theory of normal surfaces is a tool of great theoretical and practical significance. Although this theory typically leads to exponential time algorithms, very little is known about how these algorithms perform in “typical” scenarios, or how far the best known theoretical bounds are from the real worst-case scenarios. Here we study the combinatori...
متن کامل3-MANIFOLD KNOT GENUS is NP-complete
One of the central questions in topology is determining whether a given curve is knotted or unknotted. An algorithm to decide this question was given by Haken in 1961, using the technique of normal surfaces. These surfaces are rigid, discretized surfaces, well suited for algorithmic analysis. Any oriented surface without boundary can be obtained from a sphere by adding “handles”. The number of ...
متن کاملEnumerating fundamental normal surfaces: Algorithms, experiments and invariants
Computational knot theory and 3-manifold topology have seen significant breakthroughs in recent years, despite the fact that many key algorithms have complexity bounds that are exponential or greater. In this setting, experimentation is essential for understanding the limits of practicality, as well as for gauging the relative merits of competing algorithms. In this paper we focus on normal sur...
متن کاملComputational study of three dimensional potential energy surfaces in intermolecular hydrogen bonding of cis-urocanic acid
متن کامل
Discovering Treewidth
Treewidth is a graph parameter with several interesting theoretical and practical applications. This survey reviews algorithmic results on determining the treewidth of a given graph, and finding a tree decomposition of small width. Both theoretical results, establishing the asymptotic computational complexity of the problem, as experimental work on heuristics (both for upper bounds as for lower...
متن کامل