Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns.
نویسندگان
چکیده
In the presence of the monoamines serotonin and norepinephrine, spinal motoneurons can exhibit bistable behavior, in which a brief period of excitatory input evokes prolonged self-sustained firing. A brief inhibitory input returns the cell to the quiescent state. To determine whether motoneurons differ in their capacity for bistable behavior, intracellular recordings were obtained in the decerebrate cat preparation. To enhance the likelihood of encountering bistable behavior, the noradrenergic alpha1 agonist methoxamine was applied to the ventral surface of the cord. The capacity of the cells to produce bistable behavior was assessed from the duration of self-sustained firing evoked by a brief (1.5 s) excitatory synaptic input from muscle spindle Ia afferents. About 35% (17 of 49) of the cells produced steady self-sustained firing for >3 s and were considered fully bistable. The other 32 cells ( approximately 65%) were partially bistable, with self-sustained firing lasting <3 s. Fully bistable cells tended to have lower current thresholds for spike initiation and slower axonal conduction velocities than did partially bistable cells. This suggests that fully bistable motoneurons innervate fatigue resistant muscle fibers. The frequency-current (F-I) relations of the motoneurons were characterized with slow triangular current ramps. Fully bistable cells displayed an acceleration in firing rate immediately on initiation of rhythmic firing. The F-I gain after completion of the acceleration was positive. Fully bistable cells also displayed a hysteresis in the current level for firing threshold with the ascending threshold occurring at substantially higher current level than the descending one. Additionally, these current thresholds usually were centered about zero current, so that the ascending current threshold was positive while the descending current threshold was negative. This negative offset meant that fully bistable cells could exhibit tonic firing without depolarizing injected current. Partially bistable cells exhibited very different F-I characteristics. Firing rate acceleration was just as large as in fully bistable cells but did not occur until well above the current level needed to initiate rhythmic firing. F-I gain after acceleration was negative, there was little to no hysteresis between the ascending and descending firing thresholds, and both thresholds were above the zero current level. These properties of partially bistable cells suggest their functional role is in tasks requiring relatively brief, high forces. The low thresholds of fully bistable cells mean they will be readily recruited in low force tasks like posture, where their prolonged self-sustained firing would be advantageous.
منابع مشابه
The dendritic location of the L-type current and its deactivation by the somatic AHP current both contribute to firing bistability in motoneurons
Spinal motoneurons may display a variety of firing patterns including bistability between repetitive firing and quiescence and, more rarely, bistability between two firing states of different frequencies. It was suggested in the past that firing bistability required that the persistent L-type calcium current be segregated in distal dendrites, far away from the spike generating currents. However...
متن کاملA gradient in endogenous rhythmicity and oscillatory drive matches recruitment order in an axial motor pool.
The rhythmic firing behavior of spinal motoneurons is a function of their electrical properties and synaptic inputs. However, the relative contribution of endogenous versus network-based rhythmogenic mechanisms to locomotion is unclear. To address this issue, we have recorded from identified motoneurons and compared their current-evoked firing patterns to network-driven ones in the larval zebra...
متن کاملEnhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine.
Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine. Like many types of motoneurons, spinal motoneurons in the adult mammal can exhibit bistable behavior. This means that short periods of excitatory input can initiate long periods of self-sustained firing and that equally short periods of inhibition can return the cell to the quiescent state....
متن کاملBistability in spinal motoneurons in vivo: systematic variations in persistent inward currents.
Bistable behavior in spinal motoneurons consists of self-sustained firing evoked by a brief period of input. However, not all motoneurons possess an equal capacity for bistable behavior. In the companion paper, we found that self-sustained firing was persistent for long periods only in motoneurons with low rheobases and slow axonal conduction velocities. High rheobase, fast conduction velocity ...
متن کاملPharmacological characterization of the rhythmic synaptic drive onto lumbosacral motoneurons in the chick embryo spinal cord.
The isolated spinal cord of the chick embryo generates episodes of rhythmic bursting in which sartorius (hip flexor) and femorotibialis (knee extensor) motoneurons exhibit characteristic patterns of activity. At the beginning of each cycle both sets of motoneurons discharge synchronously. Following this brief synchronous activation sartorius motoneurons stop firing at the time of peak femorotib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 80 2 شماره
صفحات -
تاریخ انتشار 1998