Wavelet Packets for multi- and hyper-spectral imagery

نویسندگان

  • J. J. Benedetto
  • W. Czaja
  • M. Ehler
  • C. Flake
  • M. Hirn
  • Norbert Wiener
چکیده

State of the art dimension reduction and classification schemes in multiand hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Packets for Time-frequency Analysis of Multispectral Imagery

Multispectral geospatial image sets retain the scene’s spatial and spectral information. To jointly use both of them for analysis purposes, we propose to extend the concept of wavelet packets, by introducing a new integrated multispectral entropy function. Each spectral band is individually decomposed by the wavelet packets transform, and then the entropy term is jointly guided by information f...

متن کامل

A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)

Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

32- Band Hyper-spectral Image Compression using Embedded Zero Tree Wavelet

Hyper-spectral Image is a three dimensional array containing spatial (image) information on x & y axis and spectral information on z axis. It is high resolution imagery. Hyper-spectral image is a dynamic & powerful method to visualize data in terms of spatial & spectral features. It consumes a huge amount of storage. So due to large memory requirements, Hyperspectral images demand efficient com...

متن کامل

Leaf Area Index Retrieval Using Red Edge Parameters Based on Hyperion Hyper-spectral Imagery

Leaf area index (LAI) is an important surface biophysical parameter as an input to many process-oriented ecosystem models. Remote sensing technology provides a practical way to estimate LAI at a large spatial scale, and hence, considerable effort has been expended in developing LAI estimation models from remotely sensed imagery. LAI estimation models were usually formulated using multi-spectral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010