Monomials, Binomials, and Riemann-Roch

نویسندگان

  • Madhusudan Manjunath
  • Bernd Sturmfels
چکیده

The Riemann-Roch theorem on a graph G is closely related to Alexander duality in combinatorial commutive algebra. We study the lattice ideal given by chip firing on G and the initial ideal whose standard monomials are the G-parking functions. When G is a saturated graph, these ideals are generic and the Scarf complex is a minimal free resolution. Otherwise, syzygies are obtained by degeneration. We also develop a self-contained Riemann-Roch theory for artinian monomial ideals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indispensable monomials of toric ideals and Markov bases

Extending the notion of indispensable binomials of a toric ideal ((14), (7)), we define indispensable monomials of a toric ideal and establish some of their properties. They are useful for searching indispensable binomials of a toric ideal and for proving the existence or non-existence of a unique minimal system of binomials generators of a toric ideal. Some examples of indispensable monomials ...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Indispensable monomials of toric ideals and Markov bases

Extending the notion of indispensable binomials of a toric ideal ([14], [7]), we define indispensable monomials of a toric ideal and establish some of their properties. They are useful for searching indispensable binomials of a toric ideal and for proving the existence or non-existence of a unique minimal system of binomials generators of a toric ideal. Some examples of indispensable monomials ...

متن کامل

A New Family of Perfect Nonlinear Binomials

We prove that the binomials xp s+1 − αxpk+p2k+s define perfect nonlinear mappings inGF (p3k) for appropriate choices of the integer s and α ∈ GF (p3k). We show that these binomials are inequivalent to known perfect nonlinear monomials. As a consequence we obtain new commutative semifields for p ≥ 5 and odd k.

متن کامل

J an 2 00 7 GRAPHS , ARITHMETIC SURFACES , AND THE RIEMANN - ROCH THEOREM

We use the theory of arithmetic surfaces to show that the Riemann-Roch theorem for Q-graphs is a direct consequence of the usual Riemann-Roch theorem for curves in algebraic geometry.

متن کامل

Riemann-roch for Deligne-mumford Stacks

We give a simple proof of the Riemann-Roch theorem for Deligne-Mumford stacks using the equivariant Riemann-Roch theorem and the localization theorem in equivariant K-theory, together with some basic commutative algebra of Artin local rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1201.4357  شماره 

صفحات  -

تاریخ انتشار 2012