Comparing Implementation Efficiency of Ordinary and Squared Pairings

نویسندگان

  • Christine Abegail Antonio
  • Satoru Tanaka
  • Ken Nakamula
چکیده

In this paper, we will implement a standard probabilistic method of computing bilinear pairings. We will compare its performance to a deterministic algorithm introduced in [5] to compute the squared Tate/Weil pairings which are claimed to be 20 percent faster than the standard method. All pairings will be evaluated over pairing-friendly ordinary elliptic curves of embedding degrees 8 and 10 and a supersingular curve of embedding degree 6. For these curves, we can make the algorithm to compute both the ordinary Weil and Tate pairings deterministic and optimizations to improve the algorithms are applied. We will show that the evaluation of squared Weil pairing is, indeed, faster than the ordinary Weil pairing even with optimizations. However, evaluation of the squared Tate pairing is not faster than the ordinary Tate pairing over the curves that we used when optimizations are applied. key words and phrases. bilinear pairings, squared Weil/Tate pairing, cryptography, pairing-friendly curves

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing ordinary kriging and advanced inverse distance squared methods based on estimating coal deposits; case study: East-Parvadeh deposit, central Iran

Finding a proper estimation method for ore resources/reserves is important in mining engineering. The aim of this work is to compare the Ordinary Kriging (OK) and Advanced Inverse Distance Squared (AIDS) methods based on the correlation between the raw and estimated data in the East-Parvadeh coal deposit, central Iran. The variograms and anisotropic ellipsoids are calculated to estimate the ash...

متن کامل

Improved Weil and Tate Pairings for Elliptic and Hyperelliptic Curves

We present algorithms for computing the squared Weil and Tate pairings on elliptic curves and the squared Tate pairing on hyperelliptic curves. The squared pairings introduced in this paper have the advantage that our algorithms for evaluating them are deterministic and do not depend on a random choice of points. Our algorithm to evaluate the squared Weil pairing is about 20% more efficient tha...

متن کامل

Local Heights on Abelian Varieties and Rigid Analytic Uniformization

We express classical and p-adic local height pairings on an abelian variety with split semistable reduction in terms of the corresponding pairings on the abelian part of the Raynaud extension (which has good reduction). Here we use an approach to height pairings via splittings of biextensions which is due to Mazur and Tate. We conclude with a formula comparing Schneider's p-adic height pairing ...

متن کامل

On Efficient Pairings on Elliptic Curves over Extension Fields

In implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairingfriendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on...

متن کامل

Viewing the relative efficiency of IV estimators in models with lagged and instantaneous feedbacks

The asymptotic efficiency of OLS and IV estimators is examined in a simple dynamic structural model with a constant and two explanatory variables: the lagged dependent variable and another autoregressive variable, which may also include lagged or instantaneous feedbacks from the dependent variable. The parameter values are such that all variables are stationary. The asymptotic efficiency of OLS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007