Direct Meshless Local Petrov-galerkin (dmlpg) Method: a Generalized Mls Approximation
نویسندگان
چکیده
The Meshless Local Petrov–Galerkin method (MLPG) is one of the popular meshless methods that has been used very successfully to solve several types of boundary value problems since the late nineties. In this paper, using a generalized moving least squares (GMLS) approximation, a new direct MLPG technique, called DMLPG, is presented. Following the principle of meshless methods to express everything “entirely in terms of nodes”, the generalized MLS recovers test functionals directly from values at nodes, without any detour via shape functions. This leads to a cheaper and even more accurate scheme. In particular, the complete absence of shape functions allows numerical integrations in the weak forms of the problem to be done over low–degree polynomials instead of complicated shape functions. Hence, the standard MLS shape function subroutines are not called at all. Numerical examples illustrate the superiority of the new technique over the classical MLPG.
منابع مشابه
Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملMeshless Local Petrov-Galerkin Method for Elasto-Static Analysis of Thick-Walled Isotropic Laminated Cylinders
In this paper, one of the simplest and most regular members of the family of the Meshless Local Petrov-Galerkin (MLPG) methods; namely MLPG5, is applied to analyze the thick-walled isotropic laminated cylinders under elasto-static pressure. A novel simple technique is proposed to eliminate a very important difficulty of the meshless methods to deal with material discontinuities regarding to the...
متن کاملOptimization of Meshless Local Petrov-Galerkin Parameters using Genetic Algorithm for 3D Elasto-static Problems (TECHNICAL NOTE)
A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D elasto-static problems. Using the general MLPG concept, this method is derived through the local weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty approach is used to impose ...
متن کاملA Meshless Local Petrov-Galerkin (MLPG) Approach for 3-Dimensional Elasto-dynamics
A Meshless Local Petrov-Galerkin (MLPG) method has been developed for solving 3D elastodynamic problems. It is derived from the local weak form of the equilibrium equations by using the general MLPG concept. By incorporating the moving least squares (MLS) approximations for trial and test functions, the local weak form is discretized, and is integrated over the local sub-domain for the transien...
متن کاملImposing boundary conditions in the meshless local Petrov–Galerkin method
A particular meshless method, named meshless local Petrov–Galerkin is investigated. To treat the essential boundary condition problem, an alternative approach is proposed. The basic idea is to merge the best features of two different methods of shape function generation: the moving least squares (MLS) and the radial basis functions with polynomial terms (RBFp). Whereas the MLS has lower computa...
متن کامل