Pharmacokinetic Analysis of 111In-Labeled Liposomal Doxorubicin in Murine Glioblastoma after Blood-Brain Barrier Disruption by Focused Ultrasound

نویسندگان

  • Feng-Yi Yang
  • Hsin-Ell Wang
  • Ren-Shyan Liu
  • Ming-Che Teng
  • Jia-Je Li
  • Maggie Lu
  • Ming-Cheng Wei
  • Tai-Tong Wong
چکیده

The goal of this study was to evaluate the pharmacokinetics of targeted and untargeted (111)In-doxorubicin liposomes after these have been intravenously administrated to tumor-bearing mice in the presence of blood-brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). An intracranial brain tumor model in NOD-scid mice using human brain glioblastoma multiforme (GBM) 8401 cells was developed in this study. (111)In-labeled human atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes containing doxorubicin (Lipo-Dox; AP-1 Lipo-Dox) were used as a microSPECT probe for radioactivity measurements in the GBM-bearing mice. Compared to the control tumors treated with an injection of (111)In-AP-1 Lipo-Dox or (111)In-Lipo-Dox, the animals receiving the drugs followed by FUS exhibited enhanced accumulation of the drug in the brain tumors (p<0.05). Combining sonication with drugs significantly increased the tumor-to-normal brain doxorubicin ratio of the target tumors compared to the control tumors. The tumor-to-normal brain ratio was highest after the injection of (111)In-AP-1 Lipo-Dox with sonication. The (111)In-liposomes micro-SPECT/CT should be able to provide important information about the optimum therapeutic window for the chemotherapy of brain tumors using sonication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma.

The blood-brain barrier (BBB) inhibits the entry of the majority of chemotherapeutic agents into the brain. Previous studies have illustrated the feasibility of drug delivery across the BBB using focused ultrasound (FUS) and microbubbles. Here, we investigated the effect of FUS-enhanced delivery of doxorubicin on survival in rats with and 9L gliosarcoma cells inoculated in the brain. Each rat r...

متن کامل

Multiple sessions of liposomal doxorubicin and focused ultrasound mediated blood-brain barrier disruption: safety study

Background/introduction Transcranial MRI-guided focused ultrasound is a rapidly advancing field for delivering therapeutic and imaging agents to the brain. It has the ability to facilitate the passage of therapeutics from the vasculature to the brain parenchyma, which is normally protected by the blood-brain barrier (BBB). Its main advantages are that it is targeted, noninvasive, and readily re...

متن کامل

Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound

BACKGROUND High-dose tissue-specific delivery of therapeutic agents would be a valuable clinical strategy. We have previously shown that repeated transcranial focused ultrasound is able to increase the delivery of Evans blue significantly into brain tissue. The present study shows that repeated pulsed high-intensity focused ultrasound (HIFU) can be used to deliver high-dose atherosclerotic plaq...

متن کامل

Ultrasound Mediated Delivery of Liposomal Doxorubicin in Mice with Glioma

Malignant brain tumors remain difficult to treat with chemotherapy because the blood–brain barrier (BBB) limits the amounts of potent agents that can reach the tumor, such that the drugs are unable to reach therapeutic dosage. Although various targeted carriers that encapsulate chemotherapeutic agents have been shown to improve drug delivery to brain tumors, the BBB is still a major obstacle in...

متن کامل

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012