A Novel CCR5 Mutation Common in Sooty Mangabeys Reveals SIVsmm Infection of CCR5-Null Natural Hosts and Efficient Alternative Coreceptor Use In Vivo
نویسندگان
چکیده
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.
منابع مشابه
Parallel evolution of CCR5-null phenotypes in humans and in a natural host of simian immunodeficiency virus
The C-C chemokine receptor CCR5 in humans and rhesus macaques (Macaca mulatta) serves as the primary coreceptor for cellular entry by macrophagetropic strains of human immunodeficiency virus type 1 (HIV-1) and all reported strains of simian immunodeficiency virus (SIV) [1-6]. Humans homozygous for a 32 bp deletion allele of CCR5, resulting in a null phenotype, are highly resistant to infection ...
متن کاملDualtropic CXCR6/CCR5 Simian Immunodeficiency Virus (SIV) Infection of Sooty Mangabey Primary Lymphocytes: Distinct Coreceptor Use in Natural versus Pathogenic Hosts of SIV.
UNLABELLED Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4(+) T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonic...
متن کاملCloning and analysis of sooty mangabey alternative coreceptors that support simian immunodeficiency virus SIVsmm entry independently of CCR5.
Natural host sooty mangabeys (SM) infected with simian immunodeficiency virus SIVsmm do not develop AIDS despite high viremia. SM and other natural hosts express very low levels of CCR5 on CD4(+) T cells, and we recently showed that SIVsmm infection and robust replication occur in vivo in SM genetically lacking CCR5, indicating the use of additional entry pathways. SIVsmm uses several alternati...
متن کاملLink between Primate Lentiviral Coreceptor Usage and Nef Function
Simian immunodeficiency virus (SIVsmm) infection of sooty mangabeys (Cercocebus atys) is characterized by stable CD4(+) T cell counts despite high plasma levels of CCR5-tropic viruses. However, in rare instances, SIVsmm acquires CXCR4 coreceptor tropism and causes severe CD4(+) T cell depletion, albeit without clinical signs of immunodeficiency. Here, we show that CXCR4-tropic SIVsmm strains lo...
متن کاملSimian immunodeficiency virus utilizes human and sooty mangabey but not rhesus macaque STRL33 for efficient entry.
It has been established that many simian immunodeficiency virus (SIV) isolates utilize the orphan receptors GPR15 and STRL33 about as efficiently as the chemokine receptor CCR5 for entry into target cells. Most studies were performed, however, with coreceptors of human origin. We found that SIV from captive rhesus macaques (SIVmac) can utilize both human and simian CCR5 and GPR15 with comparabl...
متن کامل