PPARγ regulates resistance vessel tone through a mechanism involving RGS5-mediated control of protein kinase C and BKCa channel activity.
نویسندگان
چکیده
RATIONALE Activation of peroxisome proliferator-activated receptor-γ (PPARγ) by thiazolidinediones lowers blood pressure, whereas PPARγ mutations cause hypertension. Previous studies suggest these effects may be mediated through the vasculature, but the underlying mechanisms remain unclear. OBJECTIVE To identify PPARγ mechanisms and transcriptional targets in vascular smooth muscle and their role in regulating resistance artery tone. METHODS AND RESULTS We studied mesenteric artery (MA) from transgenic mice expressing dominant-negative (DN) mutant PPARγ driven by a smooth muscle cell-specific promoter. MA from transgenic mice exhibited a robust increase in myogenic tone. Patch clamp analysis revealed a reduced large conductance Ca(2+)-activated K(+) (BKCa) current in freshly dissociated smooth muscle cell from transgenic MA. Inhibition of protein kinase C corrected both enhanced myogenic constriction and impaired the large conductance Ca(2+)-activated K(+) channel function. Gene expression profiling revealed a marked loss of the regulator of G protein signaling 5 (RGS5) mRNA in transgenic MA, which was accompanied by a substantial increase in angiotensin II-induced constriction in MA. Small interfering RNA targeting RGS5 caused augmented myogenic tone in intact mesenteric arteries and increased activation of protein kinase C in smooth muscle cell cultures. PPARγ and PPARδ each bind to a PPAR response element close to the RGS5 promoter. RGS5 expression in nontransgenic MA was induced after activation of either PPARγ or PPARδ, an effect that was markedly blunted by DN PPARγ. CONCLUSIONS We conclude that RGS5 in smooth muscle is a PPARγ and PPARδ target, which when activated blunts angiotensin II-mediated activation of protein kinase C, and preserves the large conductance Ca(2+)-activated K(+) channel activity, thus providing tight control of myogenic tone in the microcirculation.
منابع مشابه
Pregnancy Upregulates Large-Conductance Ca -Activated K Channel Activity and Attenuates Myogenic Tone in Uterine Arteries
Uterine vascular tone significantly decreases whereas uterine blood flow dramatically increases during pregnancy. However, the complete molecular mechanisms remain elusive. We hypothesized that increased Ca -activated K (BKCa) channel activity contributes to the decreased myogenic tone of uterine arteries in pregnancy. Resistance-sized uterine arteries were isolated from nonpregnant and near-te...
متن کاملChronic Hypoxia Suppresses Pregnancy-Induced Upregulation of Large-Conductance Ca -Activated K Channel Activity in Uterine Arteries
Our previous study demonstrated that increased Ca -activated K (BKCa) channel activity played a key role in the normal adaptation of reduced myogenic tone of uterine arteries in pregnancy. The present study tested the hypothesis that chronic hypoxia during gestation inhibits pregnancy-induced upregulation of BKCa channel function in uterine arteries. Resistance-sized uterine arteries were isola...
متن کاملMolecular Mechanisms of Large-Conductance Ca2+-Activated Potassium Channel Activation by Ginseng Gintonin
Gintonin is a unique lysophosphatidic acid (LPA) receptor ligand found in Panax ginseng. Gintonin induces transient [Ca(2+)]i through G protein-coupled LPA receptors. Large-conductance Ca(2+)-activated K(+) (BKCa) channels are expressed in blood vessels and neurons and play important roles in blood vessel relaxation and attenuation of neuronal excitability. BKCa channels are activated by transi...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملStoking up BKCa channels in hemorrhagic shock: which channel subunit is really fueling the fire?
Large conductance calcium-activated potassium channels (BKCa) are abundantly expressed in smooth muscle cells (SMCs) lining the blood vessel wall. They are composed of an -subunit (Slo) and a modulatory 1-subunit, which serves to maintain the normal high voltageand Ca -sensitivity of the pore-forming -subunit (reviewed in1,2). In the vasculature, BKCa operate by limiting Ca entry and arterial c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 111 11 شماره
صفحات -
تاریخ انتشار 2012