Attenuation of Progressive Hearing Loss in DBA/2J Mice by Reagents that Affect Epigenetic Modifications Is Associated with Up-Regulation of the Zinc Importer Zip4
نویسندگان
چکیده
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: L-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of L-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (-)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.
منابع مشابه
Gene expression profiling of DBA/2J mice cochleae treated with l-methionine and valproic acid
DBA/2J mice, which have homozygous mutations in Cdh23 and Fscn2, are characterized by early onset hearing loss at as early as three-weeks of age (Noben-Trauth et al., 2003 [1]) and are an animal model for progressive hearing loss research. Recently, it has been reported that epigenetic regulatory pathways likely play an important role in hearing loss (Provenzano and Domann, 2007 [2]; Mutai et a...
متن کاملQuantitative trait loci on chromosome 5 for susceptibility to frequency-specific effects on hearing in DBA/2J mice
The DBA/2J strain is a model for early-onset, progressive hearing loss in humans, as confirmed in the present study. DBA/2J mice showed progression of hearing loss to low-frequency sounds from ultrasonic-frequency sounds and profound hearing loss at all frequencies before 7 months of age. It is known that the early-onset hearing loss of DBA/2J mice is caused by affects in the ahl (Cdh23(ahl)) a...
متن کاملRetinal gene expression changes related to IOP exposure and axonal loss in DBA/2J mice.
PURPOSE To determine the effects of cumulative IOP exposure and axonal damage on retinal gene expression in DBA/2 mice. METHODS DBA/2J, DBA/2J(pe) (pearl), and C57BL/6 mice from 3 to 12 months of age were used. IOP was measured with a rebound tonometer, and optic nerve (ON) damage was determined by grading of ON sections. Retinal RNA was subjected to microarray analysis. Comparisons explored ...
متن کاملEpigenetic Modifications of Host Genes Induced by Bacterial Infection
Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...
متن کاملEpigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study
Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015