Regulation of IPSP theta rhythm by muscarinic receptors and endocannabinoids in hippocampus.

نویسندگان

  • Christian G Reich
  • Miranda A Karson
  • Sergei V Karnup
  • Lauren M Jones
  • Bradley E Alger
چکیده

Theta rhythms are behaviorally relevant electrical oscillations in the mammalian brain, particularly the hippocampus. In many cases, theta oscillations are shaped by inhibitory postsynaptic potentials (IPSPs) that are driven by glutamatergic and/or cholinergic inputs. Here we show that hippocampal theta rhythm IPSPs induced in the CA1 region by muscarinic acetylcholine receptors independent of all glutamate receptors can be briefly interrupted by action potential-induced, retrograde endocannabinoid release. Theta IPSPs can be recorded in CA1 pyramidal cell somata surgically isolated from CA3, subiculum, and even from their own apical dendrites. These results suggest that perisomatic-targeting interneurons whose output is subject to inhibition by endocannabinoids are the likely source of theta IPSPs. Interneurons having these properties include the cholecystokinin-containing cells. Simultaneous recordings from pyramidal cell pairs reveal synchronous theta-frequency IPSPs in neighboring pyramidal cells, suggesting that these IPSPs may help entrain or modulate small groups of pyramidal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscarinic cholinergic receptors modulate inhibitory synaptic rhythms in hippocampus and neocortex

Activation of muscarinic acetylcholine (ACh) receptors (mAChRs) powerfully affects many neuronal properties as well as numerous cognitive behaviors. Small neuronal circuits constitute an intermediate level of organization between neurons and behaviors, and mAChRs affect interactions among cells that compose these circuits. Circuit activity is often assessed by extracellular recordings of the lo...

متن کامل

Activation of intrinsic hippocampal theta oscillations by acetylcholine in rat septo-hippocampal cocultures.

1. Oscillatory electro-encephalographic activity at theta frequencies (4-15 Hz) can be recorded from the hippocampus in vivo and depends on intact septal projections. The hypothesis that these oscillations are imposed on the hippocampus by rhythmically active septal inputs was tested using dual intracellular recordings from CA1 and CA3 pyramidal cells in septo-hippocampal cocultures. 2. Septo-h...

متن کامل

Properties of carbachol-induced oscillatory activity in rat hippocampus.

Properties of carbachol-induced oscillatory activity in rat hippocampus. J. Neurophysiol. 78: 2631-2640, 1997. The recent resurgence of interest in carbachol oscillations as an in vitro model of theta rhythm in the hippocampus prompted us to evaluate the circuit mechanisms involved. In extracellular recordings, a regularly spaced bursting pattern of field potentials was observed in both CA3 and...

متن کامل

The role of acetylcholine in learning and memory.

Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been sho...

متن کامل

Role of the cholinergic muscarinic receptors of the CA1 area in the memory impairment induced by iron oxide nanoparticle in adult male rats

Objective(s): Nanoparticles of iron oxide (nFe2O3) are widely used in medicine and industry and could interfere with the brain processes associated with memory. The involvement of muscarinic cholinergic receptors in the process of memory formation has been confirmed. The present study aimed to investigate the possible interference of the cholinergic muscarinic receptors of the dorsal hippocampa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 6  شماره 

صفحات  -

تاریخ انتشار 2005