p-ADIC q-EXPANSION OF ALTERNATING SUMS OF POWERS

نویسندگان

  • Taekyun Kim
  • T. KIM
چکیده

Let p be a fixed prime. Throughout this paper Zp, Qp, C and Cp will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of algebraic closure of Qp, cf.[1, 4, 6, 10]. Let vp be the normalized exponential valuation of Cp with |p|p = p −vp(p) = p. When one talks of q-extension, q is variously considered as an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally assumes |q| < 1. If q ∈ Cp, then we assume |q − 1|p < p − 1 p−1 , so that q = exp(x log q) for |x|p ≤ 1. Kubota and Leopoldt proved the existence of meromorphic functions, Lp(s, χ), defined over the padic number field, that serve as p-adic equivalents of the Dirichlet L-series, cf.[10, 11].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry Fermionic p-Adic q-Integral on ℤp for Eulerian Polynomials

Kim et al. 2012 introduced an interesting p-adic analogue of the Eulerian polynomials. They studied some identities on the Eulerian polynomials in connection with the Genocchi, Euler, and tangent numbers. In this paper, by applying the symmetry of the fermionic p-adic q-integral on Zp, defined by Kim 2008 , we show a symmetric relation between the q-extension of the alternating sum of integer p...

متن کامل

On the alternating sums of powers of consecutive q-integers

In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler. 2000 Mathematics Subject Classification : 11S80, 11B68

متن کامل

Identities of Symmetry for q-Euler Polynomials

In this paper, we derive eight basic identities of symmetry in three variables related to q-Euler polynomials and the q -analogue of alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundance of symmetries shed new light even on the existing identities so as to yield some further interest...

متن کامل

A q-Analogue of Faulhaber's Formula for Sums of Powers

Generalizing the formulas of Warnaar and Schlosser, we prove that Schlosser’s qanalogue of the sums of powers has a similar formula, which can be considered as a q-analogue of Faulhaber’s formula. We also show that there is an analogous formula for alternating sums of a q-analogue of powers. MR Subject Classifications: Primary 05A30; Secondary 05A15;

متن کامل

On p-adic q-L-functions and sums of powers

Let p be a fixed prime. Throughout this paper Zp, Qp, C and Cp will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of algebraic closure of Qp, cf.[1, 4, 6, 10]. Let vp be the normalized exponential valuation of Cp with |p|p = p −vp(p) = p. When one talks of q-extension, q is variously considered as an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006