Stm1p alters the ribosome association of eukaryotic elongation factor 3 and affects translation elongation

نویسندگان

  • Natalya Van Dyke
  • Brian F. Pickering
  • Michael W. Van Dyke
چکیده

Stm1p is a Saccharomyces cerevisiae protein that is primarily associated with cytosolic 80S ribosomes and polysomes. Several lines of evidence suggest that Stm1p plays a role in translation under nutrient stress conditions, although its mechanism of action is not yet known. In this study, we show that yeast lacking Stm1p (stm1Delta) are hypersensitive to the translation inhibitor anisomycin, which affects the peptidyl transferase reaction in translation elongation, but show little hypersensitivity to other translation inhibitors such as paromomycin and hygromycin B, which affect translation fidelity. Ribosomes isolated from stm1Delta yeast have intrinsically elevated levels of eukaryotic elongation factor 3 (eEF3) associated with them. Overexpression of eEF3 in cells lacking Stm1p results in a growth defect phenotype and increased anisomycin sensitivity. In addition, ribosomes with increased levels of Stm1p exhibit decreased association with eEF3. Taken together, our data indicate that Stm1p plays a complementary role to eEF3 in translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation

Internal ribosome entry sites (IRESs) are powerful model systems to understand how the translation machinery can be manipulated by structured RNAs and for exploring inherent features of ribosome function. The intergenic region (IGR) IRESs from the Dicistroviridae family of viruses are structured RNAs that bind directly to the ribosome and initiate translation by co-opting the translation elonga...

متن کامل

Demonstration of translation elongation factor 3 activity from a non-fungal species, Phytophthora infestans

In most eukaryotic organisms, translation elongation requires two highly conserved elongation factors eEF1A and eEF2. Fungal systems are unique in requiring a third factor, the eukaryotic Elongation Factor 3 (eEF3). For decades, eEF3, a ribosome-dependent ATPase, was considered "fungal-specific", however, recent bioinformatics analysis indicates it may be more widely distributed among other uni...

متن کامل

Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization.

Eukaryotic polypeptide elongation factor EF-1 is not only a major translational factor, but also one of the most important multifunctional (moonlighting) proteins. EF-1 consists of four different subunits collectively termed EF-1alphabeta beta'gamma and EF-1alphabeta gammadelta in plants and animals, respectively. EF-1alpha x GTP catalyzes the binding of aminoacyl-tRNA to the A-site of the ribo...

متن کامل

Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells

Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly c...

متن کامل

The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries.

eIF3 promotes translation initiation, but relatively little is known about its full range of activities in the cell. Here, we employed affinity purification and highly sensitive LC-MS/MS to decipher the fission yeast eIF3 interactome, which was found to contain 230 proteins. eIF3 assembles into a large supercomplex, the translasome, which contains elongation factors, tRNA synthetases, 40S and 6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2009