Regulation of the autophagy system during chronic contractile activity‐induced muscle adaptations
نویسندگان
چکیده
Skeletal muscle is adaptable to exercise stimuli via the upregulation of mitochondrial biogenesis, and recent studies have suggested that autophagy also plays a role in exercise-induced muscle adaptations. However, it is still obscure how muscle regulates autophagy over the time course of training adaptations. This study examined the expression of autophagic proteins in skeletal muscle of rats exposed to chronic contractile activity (CCA; 6 h/day, 9V, 10 Hz continuous, 0.1 msec pulse duration) for 1, 3, and 7 days (n = 8/group). CCA-induced mitochondrial adaptations were observed by day 7, as shown by the increase in mitochondrial proteins (PGC-1α, COX I, and COX IV), as well as COX activity. Notably, the ratio of LC3 II/LC3 I, an indicator of autophagy, decreased by day 7 largely due to a significant increase in LC3 I. The autophagic induction marker p62 was elevated on day 3 and returned to basal levels by day 7, suggesting a time-dependent increase in autophagic flux. The lysosomal system was upregulated early, prior to changes in mitochondrial proteins, as represented by increases in lysosomal system markers LAMP1, LAMP2A, and MCOLN1 as early as by day 1, as well as TFEB, a primary regulator of lysosomal biogenesis and autophagy flux. Our findings suggest that, in response to chronic exercise, autophagy is upregulated concomitant with mitochondrial adaptations. Notably, our data reveal the surprising adaptive plasticity of the lysosome in response to chronic contractile activity which enhances muscle health by providing cells with a greater capacity for macromolecular and organelle turnover.
منابع مشابه
The regulation of autophagy during exercise in skeletal muscle.
The merits of exercise on muscle health and well-being are numerous and well documented. However, the mechanisms underlying the robust adaptations induced by exercise, particularly on mitochondria, are less clear and much sought after. Recently, an evolutionary conserved cellular recycling mechanism known as autophagy has been implicated in the adaptations to acute and chronic exercise. A basal...
متن کاملKnockdown of mitofilin inhibits autophagy and facilitates starvation-induced apoptosis in HeLa cells
Objective(s): Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis. Materials and Methods: Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy a...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملChronology of UPR activation in skeletal muscle adaptations to chronic contractile activity.
The mitochondrial and endoplasmic reticulum unfolded protein responses (UPR(mt) and UPR(ER)) are important for cellular homeostasis during stimulus-induced increases in protein synthesis. Exercise triggers the synthesis of mitochondrial proteins, regulated in part by peroxisome proliferator activator receptor-γ coactivator 1α (PGC-1α). To investigate the role of the UPR in exercise-induced adap...
متن کاملSkeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment
We tested the hypothesis that a 6-week regimen of simvastatin would attenuate skeletal muscle adaptation to low-intensity exercise. Male C57BL/6J wildtype mice were subjected to 6-weeks of voluntary wheel running or normal cage activities with or without simvastatin treatment (20 mg/kg/d, n = 7-8 per group). Adaptations in in vivo fatigue resistance were determined by a treadmill running test, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017