On Universal Sums of Polygonal Numbers
نویسندگان
چکیده
For m = 3, 4, . . . , the polygonal numbers of order m are given by pm(n) = (m−2) ` n 2 ́ +n (n = 0, 1, 2, . . . ). For positive integers a, b, c and i, j, k > 3 with max{i, j, k} > 5, we call the triple (api, bpj , cpk) universal if for any n = 0, 1, 2, . . . there are nonnegative integers x, y, z such that n = api(x)+bpj(y)+cpk(z). We show that there are only 95 candidates for universal triples (two of which are (p4, p5, p6) and (p3, p4, p27)), and conjecture that they are indeed universal triples. For many triples (api, bpj , cpk) (including (p3, 4p4, p5), (p4, p5, p6) and (p4, p4, p5)), we prove that any nonnegative integer can be written in the form api(x)+bpj(y)+cpk(z) with x, y, z ∈ Z. We also show some related new results on ternary quadratic forms, one of which states that any nonnegative integer n ≡ 1 (mod 6) can be written in the form x + 3y + 24z with x, y, z ∈ Z. In addition, we pose several related conjectures on sums of primes and polygonal numbers.
منابع مشابه
5 M ay 2 00 9 Preprint , arXiv : 0905 . 0635 ON UNIVERSAL SUMS OF POLYGONAL NUMBERS
For m = 3, 4, . . . , the polygonal numbers of order m are given by pm(n) = (m−2) ` n 2 ́ +n (n = 0, 1, 2, . . . ). For positive integers a, b, c and i, j, k > 3 with max{i, j, k} > 5, we call the triple (api, bpj , cpk) universal if for any n = 0, 1, 2, . . . there are nonnegative integers x, y, z such that n = api(x) + bpj(y) + cpk(z). We show that there are only 95 candidates for universal tr...
متن کاملTHE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.
متن کاملA ug 2 00 9 Preprint , arXiv : 0905 . 0635 ON UNIVERSAL SUMS OF POLYGONAL NUMBERS
For m = 3, 4, . . . , the polygonal numbers of order m are given by pm(n) = (m−2) ` n 2 ́ +n (n = 0, 1, 2, . . . ). For positive integers a, b, c and i, j, k > 3 with max{i, j, k} > 5, we call the triple (api, bpj , cpk) universal if for any n = 0, 1, 2, . . . there are nonnegative integers x, y, z such that n = api(x)+bpj(y)+cpk(z). We show that there are only 95 candidates for universal triple...
متن کاملarXiv : 0906 . 2450 ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS
For m = 3, 4, . . . those pm(x) = (m − 2)x(x − 1)/2 + x with x ∈ Z are called generalized m-gonal numbers. Recently the second author studied for what values of positive integers a, b, c the sum ap5 + bp5 + cp5 is universal over Z (i.e., any n ∈ N = {0, 1, 2, . . . } has the form ap5(x) + bp5(y) + cp5(z) with x, y, z ∈ Z). In this paper we proved that p5 + bp5 + 3p5 (b = 1, 2, 3, 4, 9) and p5 +...
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کامل