Prism-hamiltonicity of triangulations

نویسندگان

  • Daniel P. Biebighauser
  • Mark N. Ellingham
چکیده

The prism over a graph G is the Cartesian productG K2 of G with the complete graph K2. If the prism over G is hamiltonian, we say that G is prism-hamiltonian. We prove that triangulations of the plane, projective plane, torus, and Klein bottle are prism-hamiltonian. We additionally show that every 4-connected triangulation of a surface with sufficiently large representativity is prism-hamiltonian, and that every 3-connected planar bipartite graph is prism-hamiltonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton cycles in prisms over graphs

The prism over a graph G is the Cartesian product G2K2 of G with the complete graph K2. If G is hamiltonian, then G2K2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be a good measure how close a graph is to being hamiltonian. In this paper, we examine classical problems on hamiltonicity of graphs in the context of hamiltonian prisms.

متن کامل

Hamilton cycles in prisms

The prism over a graph G is the Cartesian product G2K2 of G with the complete graph K2. If G is hamiltonian, then G2K2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be an interesting relaxation of being hamiltonian. In this paper, we examine classical problems on hamiltonicity of graphs in the context of having a hamiltonian prism. c © ???...

متن کامل

On properties of higher-order Delaunay graphs with applications

In this work we study the order-k Delaunay graph, which is formed by edges pq having a circle through p and q and containing no more than k sites. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph and show that it is connected under the flip operation if k ≤ 1 and for every k if points are in convex position. We also study the ham...

متن کامل

Deciding Graph non-Hamiltonicity via a Closure Algorithm

We present a matching and LP based heuristic algorithm that decides graph non-Hamiltonicity. Each of the n! Hamilton cycles in a complete directed graph on n + 1 vertices corresponds with each of the n! n-permutation matrices P, such that pu,i = 1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n + 1. A graph instance (G) is initially coded as exclusion set ...

متن کامل

Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

We show that every triangulation (maximal planar graph) on n 6 vertices can be flipped into a Hamiltonian triangulation using a sequence of less than n/2 combinatorial edge flips. The previously best upper bound uses 4-connectivity as a means to establish Hamiltonicity. But in general about 3n/5 flips are necessary to reach a 4-connected triangulation. Our result improves the upper bound on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2008