High-Dimensional Random Matrices from the Classical Matrix Groups, and Generalized Hypergeometric Functions of Matrix Argument
نویسنده
چکیده
Results from the theory of the generalized hypergeometric functions of matrix argument, and the related zonal polynomials, are used to develop a new approach to study the asymptotic distributions of linear functions of uniformly distributed random matrices from the classical compact matrix groups. In particular, we provide a new approach for proving the following result of D’Aristotile, Diaconis, and Newman: Let the random matrix Hn be uniformly distributed according to Haar measure on the group of n × n orthogonal matrices, and let An be a non-random n × n real matrix such that tr (AnAn) = 1. Then, as n→∞, √ n trAnHn converges in distribution to the standard normal distribution.
منابع مشابه
Generalized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملLommel Matrix Functions
The main objective of this work is to develop a pair of Lommel matrix functions suggested by the hypergeometric matrix functions and some of their properties are studied. Some properties of the hypergeometric and Bessel matrix functions are obtained.
متن کاملTotal Positivity Properties of Generalized Hypergeometric Functions of Matrix Argument
In multivariate statistical analysis, several authors have studied the total positivity properties of the generalized (0F1) hypergeometric function of two real symmetric matrix arguments. In this paper, we make use of zonal polynomial expansions to obtain a new proof of a result that these 0F1 functions fail to satisfy certain pairwise total positivity properties; this proof extends both to arb...
متن کاملGENERALIZED REGULAR FUZZY MATRICES
In this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. This leads to the characterization of a matrix for which the regularity index and the index are identical. Further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 3 شماره
صفحات -
تاریخ انتشار 2011