New Polynomial Cases of the Weighted Efficient Domination Problem
نویسندگان
چکیده
Let G be a finite undirected graph. A vertex dominates itself and all its neighbors in G. A vertex set D is an efficient dominating set (e.d. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d. in G, is known to be NP-complete even for very restricted graph classes. In particular, the ED problem remains NP-complete for 2P3-free graphs and thus for P7-free graphs. We show that the weighted version of the problem (abbreviated WED) is solvable in polynomial time on various subclasses of 2P3-free and P7-free graphs, including (P2+P4)-free graphs, P5-free graphs and other classes. Furthermore, we show that a minimum weight e.d. consisting only of vertices of degree at most 2 (if one exists) can be found in polynomial time. This contrasts with our NP-completeness result for the ED problem on planar bipartite graphs with maximum degree 3.
منابع مشابه
Polynomial-time Algorithms for Weighted Efficient Domination Problems in AT-free Graphs and Dually Chordal Graphs
An efficient dominating set (or perfect code) in a graph is a set of vertices the closed neighborhoods of which partition the vertex set of the graph. The minimum weight efficient domination problem is the problem of finding an efficient dominating set of minimum weight in a given vertex-weighted graph; the maximum weight efficient domination problem is defined similarly. We develop a framework...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملWeighted Efficient Domination for $P_6$-Free Graphs in Polynomial Time
In a finite undirected graph G = (V,E), a vertex v ∈ V dominates itself and its neighbors in G. A vertex set D ⊆ V is an efficient dominating set (e.d. for short) of G if every v ∈ V is dominated in G by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d. in G, is known to be NP-complete for P7-free graphs but solvable in linear time for P5-fr...
متن کاملOn Efficient Domination for Some Classes of H-Free Chordal Graphs
A vertex set D in a finite undirected graph G is an efficient dominating set (e.d.s. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d.s. in G, is known to be NP-complete even for very restricted graph classes such as for 2P3-free chordal graphs while it is solvable in polynomial time for P...
متن کاملWeighted Efficient Domination for P5-Free Graphs in Linear Time
In a finite undirected graph G = (V,E), a vertex v ∈ V dominates itself and its neighbors. A vertex set D ⊆ V in G is an efficient dominating set (e.d. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d. in G, is known to be NP-complete for P7-free graphs but solvable in polynomial time for ...
متن کامل