Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy.
نویسندگان
چکیده
We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd(3)Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, with the same structure as Pd (111), is formed on the surface of high-temperature-annealed Pd(3)Fe(111). This Pd layer is considerably more active than Pd(111); its ORR kinetics is comparable to that of a Pt(111) surface. The enhanced catalytic activity of the segregated Pd layer compared to that of bulk Pd apparently reflects the modification of Pd surface's electronic properties by underlying Fe. The Pd(3)Fe(111) suffers a large loss in ORR activity when the subsurface Fe is depleted by potential cycling (i.e., repeated excursions to high potentials in acid solutions). The Pd(3)Fe(111) surface is an excellent substrate for a Pt monolayer ORR catalyst, as verified by its enhanced ORR kinetics on PT(ML)/Pd/Pd(3)Fe(111). Our density functional theory studies suggest that the observed enhancement of ORR activity originates mainly from the destabilization of OH binding and the decreased Pt-OH coverage on the Pt/Pd/Pd(3)Fe(111) surface. The activity of Pt(ML)/Pd(111) and Pt(111) is limited by OH removal, whereas the activity of Pt(ML)/Pd/Pd(3)Fe(111) is limited by the O-O bond scission, which places these two surfaces on the two sides of the volcano plot.
منابع مشابه
Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was corr...
متن کاملA NEW GAS DIFFUSION ELECTRODE (GDE) WITH A BETTER O2 REDUCTION ELECTROCATALYSTS WITH VERY LOW PT CONTENTS VIA NANO-SIZED PT-COATED NAFION
In the present study, a new gas diffusion electrode (GDE) (based on Pt/Nafion membrane) is fabricated. The electrochemical results show that the new GDE has the highest electrochemical activity toward the oxygen reduction reaction (ORR) among the three electrodes. The SEM and XRD findings show that a platinum layer can be attached to Nafion membrane closely and firmly with a strong peak corresp...
متن کاملPlatinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.
The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol...
متن کاملStructural, compositional and electrochemical characterization of Pt-Co oxygen-reduction catalysts.
Pt-Co thin-film electrocatalysts have been characterized using low-energy ion-scattering spectroscopy (LEISS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), temperature-programmed desorption (TPD) and electrochemistry (EC). For comparative purposes, LEISS and EC were also carried out on a bulk Pt(3)Co(111) single crystal. The extensive experimental work resulte...
متن کاملMorphology and CO adsorption on platinum supported on thin Fe(3)O(4)(111) films.
Nucleation, growth and thermal stability of Pt particles supported on well ordered Fe(3)O(4)(111) thin films grown on Pt(111) were studied by scanning tunnelling microscopy (STM) and temperature programmed desorption (TPD) of CO. STM studies showed that Pt grows through the formation of single-layer islands that coalesce at high coverage. Vacuum annealing at 600 K caused Pt sintering and the fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 35 شماره
صفحات -
تاریخ انتشار 2009