Gentzen-type Refutation Systems for Three-Valued Logics
نویسندگان
چکیده
While the purpose of a conventional proof calculus is to axiomatise the set of valid sentences of a given logic, a refutation system, or complementary calculus, is concerned with axiomatising the invalid sentences. Instead of exhaustively searching for counter models for some sentence, refutation systems establish invalidity by deduction and thus in a purely syntactic way. Such systems are relevant not only for proof-theoretic reasons but also for realising deductive systems for nonmonotonic logics. In this paper, we introduce Gentzen-type refutation systems for two basic three-valued logics that allow to embed well-known three-valued logics relevant for AI and logic programming like that of Kleene, Łukasiewicz, Gödel, as well as three-valued paraconsistent logics. As an application of our calculus, we provide derived rules for Gödel’s three-valued logic, allowing to decide strong equivalence of logic programs under the answer-set semantics.
منابع مشابه
Gentzen-Type Refutation Systems for Three-Valued Logics with an Application to Disproving Strong Equivalence
While the purpose of conventional proof calculi is to axiomatise the set of valid sentences of a logic, refutation systems axiomatise the invalid sentences. Such systems are relevant not only for proof-theoretic reasons but also for realising deductive systems for nonmonotonic logics. We introduce Gentzen-type refutation systems for two basic three-valued logics and we discuss an application of...
متن کاملClassical Gentzen-Type Methods in Propositional Many-Valued Logics
A classical Gentzen-type system is one which employs two-sided sequents, together with structural and logical rules of a certain characteristic form. A decent Gentzentype system should allow for direct proofs, which means that it should admit some useful forms of cut elimination and the subformula property. In this tutorial we explain the main difficulty in developing classical Gentzen-type sys...
متن کاملCut-free sequent calculi for C-systems with generalized finite-valued semantics
In [5], a general method was developed for generating cut-free ordinary sequent calculi for logics that can be characterized by finite-valued semantics based on non-deterministic matrices (Nmatrices). In this paper, a substantial step towards automation of paraconsistent reasoning is made by applying that method to a certain crucial family of thousands of paraconsistent logics, all belonging to...
متن کاملOn the Proof Theory of Natural Many - valuedLogicsArnon
We claim that Proof Systems for natural many-valued logics, whether nite-valued or innnite-valued should be similar in their structure to proof systems of any other natural logic: one should not be able to tell from the structures which are used in a proof system the intended semantics. It is also preferable that standard connectives will be used, with corresponding standard rules. We demonstra...
متن کاملDissertation Abstract Semantic Investigation of Proof Systems for Non-classical Logics
Ever since the introduction of sequent calculi for classical and intuitionistic logic by Gentzen [20], sequent calculi have been widely applied in the fields of proof theory, computational logic, and automated deduction. These systems and their natural generalizations (such as many-sided sequent and hypersequent calculi) provide suitable proof-theoretic frameworks for a huge variety of non-clas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010