Fuzzy least-squares algorithms for interactive fuzzy linear regression models
نویسندگان
چکیده
Fuzzy regression analysis can be thought of as a fuzzy variation of classical regression analysis. It has been widely studied and applied in diverse areas. In general, the analysis of fuzzy regression models can be roughly divided into two categories. The 0rst is based on Tanaka’s linear-programming approach. The second category is based on the fuzzy least-squares approach. In this paper, new types of fuzzy least-squares algorithms with a noise cluster for interactive fuzzy linear regression models are proposed. These algorithms are robust for the estimation of fuzzy linear regression models, especially when outliers are present. Numerical examples are given to detail the e5ectiveness of this approach. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملEvaluation of hybrid fuzzy regression capability based on comparison with other regression methods
In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...
متن کاملESTIMATING THE PARAMETERS OF A FUZZY LINEAR REGRESSION MODEL
Fuzzy linear regression models are used to obtain an appropriate linear relation between a dependent variable and several independent variables in a fuzzy environment. Several methods for evaluating fuzzy coefficients in linear regression models have been proposed. The first attempts at estimating the parameters of a fuzzy regression model used mathematical programming methods. In this the...
متن کاملIdentification of Possibilistic Linear Systems by Quadratic Membership Functions of Fuzzy Parameters
We have already formalized several models of the possibilistic linear regression analysis, where it is assumed that possibilistic parameters are non-interactive, i.e., the joint possibilistic distribution of parameters is defined by minimum operators. In this paper, we will deal with the interactive case in which quadratic membership functions defined by A. Celmins are considered. With the same...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 135 شماره
صفحات -
تاریخ انتشار 2003