Prototyping of LAI and FPAR Retrievals from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) Data

نویسندگان

  • Chi Chen
  • Yuri Knyazikhin
  • Taejin Park
  • Kai Yan
  • Alexei I. Lyapustin
  • Yujie Wang
  • Bin Yang
  • Ranga B. Myneni
چکیده

Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation are key variables in many global models of climate, hydrology, biogeochemistry, and ecology. These parameters are being operationally produced from Terra and Aqua MODIS bidirectional reflectance factor (BRF) data. The MODIS science team has developed, and plans to release, a new version of the BRF product using the multi-angle implementation of atmospheric correction (MAIAC) algorithm from Terra and Aqua MODIS observations. This paper presents analyses of LAI and FPAR retrievals generated with the MODIS LAI/FPAR operational algorithm using Terra MAIAC BRF data. Direct application of the operational algorithm to MAIAC BRF resulted in an underestimation of the MODIS Collection 6 (C6) LAI standard product by up to 10%. The difference was attributed to the disagreement between MAIAC and MODIS BRFs over the vegetation by −2% to +8% in the red spectral band, suggesting different accuracies in the BRF products. The operational LAI/FPAR algorithm was adjusted for uncertainties in the MAIAC BRF data. Its performance evaluated on a limited set of MAIAC BRF data from North and South America suggests an increase in spatial coverage of the best quality, high-precision LAI retrievals of up to 10%. Overall MAIAC LAI and FPAR are consistent with the standard C6 MODIS LAI/FPAR. The increase in spatial coverage of the best quality LAI retrievals resulted in a better agreement of MAIAC LAI with field data compared to the C6 LAI product, with the RMSE decreasing from 0.80 LAI units (C6) down to 0.67 (MAIAC) and the R2 increasing from 0.69 to 0.80. The slope (intercept) of the satellite-derived vs. field-measured LAI regression line has changed from 0.89 (0.39) to 0.97 (0.25).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions

Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the MODerate Resolution Imaging Spectroradiometer (MODIS), which provides aerosol optical depth (AOD) at 1 km resolution. The relationship between MAIAC AOD and PM2.5 as measured by 84 EPA ground monitoring stations in the entire New England and the Harvard super site during 2002–2008 was in...

متن کامل

Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data

This paper describes results from prototyping of the moderate resolution imaging spectroradiometer (MODIS) radiative transfer-based synergistic algorithm for the estimation of global leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation using land surface reflectances (LASUR) and Landsat data. The algorithm uses multispectral surface reflectance...

متن کامل

Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests

This paper presents the analysis of radiative transfer assumptions underlying moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) algorithm for the case of spatially heterogeneous broadleaf forests. Data collected by a Boston University research group during the July 2000 field campaign at the Earth Observing Sys...

متن کامل

High resolution aerosol data from MODIS satellite for urban air quality studies

The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC ...

متن کامل

Mapping Snow Grain Size over Greenland from MODIS

This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic rad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017