Feeding and dissipative waves in fracture and phase transition. III. Triangular-cell lattice

نویسنده

  • L. I. Slepyan
چکیده

Wave con2gurations for modes I and II of crack propagation in an elastic triangular-cell lattice are studied. [Mode III was considered in Part I of the paper: Slepyan, L.I. Feeding and dissipative waves in fracture and phase transition. I. Some 1D structures and a square-cell lattice. J. Mech. Phys. Solids 49 (2001) 469.] A general solution incorporates a complete set of the feeding and dissipative waves. The solution is based on the wave dispersion dependences obtained in an explicit form. Also some general properties and the long-wave asymptotes of the corresponding Green function are found. This results in the determination of the wavenumbers and modes. The macrolevel-associated solutions exist as the sub-Rayleigh crack speed regime for both modes and as a shear-longitudinal wave-speed intersonic regime for mode II only. In particular, it is shown that any intersonic crack speed is possible, whereas only the speed (shear wave speed multiplied by √ 2) corresponds to a positive energy release in the cohesive-zone-free homogeneous-material model. This is a manifestation of the fact that the local energy release in the lattice is not connected with the singularity of the macrolevel 2eld. Microlevel solutions, corresponding to a nonzero feeding wavenumber, exist for both modes, at least from the energy point of view, for any, suband super-Rayleigh, intersonic and supersonic crack speed regimes. In particular, in the super-Rayleigh regime, a high-frequency wave delivers energy to the crack, while the macrolevel wave carries energy away from the crack. ? 2001 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feeding and dissipative waves in fracture and phase transition I. Some 1D structures and a square-cell lattice

In the lattice structure considered here, crack propagation is caused by feeding waves, carrying energy to the crack front, and accompanied by dissipative waves carrying a part of this energy away from the front (the di4erence is spent on the bond disintegration). The feeding waves di4er by their wavenumber. A zero feeding wavenumber corresponds to a macrolevel-associated solution with the clas...

متن کامل

Feeding and dissipative waves in fracture and phase transition II. Phase-transition waves

Discrete and homogeneous models of a structured material are considered to resolve di0culties in the analysis of dynamic phase transition. The discrete model is a chain consisting of particles connected by massless bonds, while the continuous model is represented by a partial di3erential equation with higher than the second order of coordinate derivatives. The macrolevel constitutive law is rep...

متن کامل

Localised knife waves in a structured interface

We consider a Mode III lattice with an interface layer where the dynamic crack growth is caused by a localised sinusoidal wave. In the wave–fracture scenario, the ‘feeding wave’ (here also called the knife wave) delivers energy to the moving crack front, while the dissipative waves carry a part of this energy away from the front. The questions addressed here are: What are the conditions of exis...

متن کامل

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001