Advances in viscous vortex methods – meshless spatial adaption based on radial basis function interpolation
نویسندگان
چکیده
Vortex methods have a history as old as finite differences. They have since faced difficulties stemming from the numerical complexity of the Biot-Savart law, the inconvenience of adding viscous effects in a Lagrangian formulation, and the loss of accuracy due to Lagrangian distortion of the computational elements. The first two issues have been successfully addressed, respectively, by the application of the fast multipole method, and by a variety of viscous schemes which will be briefly reviewed in this article. The standard method to deal with the third problem is the use of remeshing schemes consisting of tensor product interpolation with high-order kernels. In this work, a numerical study of the errors due to remeshing has been performed, as well as of the errors implied in the discretization itself using vortex blobs. In addition, an alternative method of controlling Lagrangian distortion is proposed, based on ideas of radial basis function (RBF) interpolation (briefly reviewed here). This alternative is formulated grid-free, and is shown to be more accurate than standard remeshing. In addition to high-accuracy, RBF interpolation allows core size control, either for correcting the core spreading viscous scheme or for providing a variable resolution in the physical domain. This formulation will allow in theory the application of error estimates to produce a truly adaptive spatial refinement technique. Proof-of-concept is provided by calculations of the relaxation of a perturbed monopole to a tripole attractor. Copyright c © 2004 John Wiley & Sons, Ltd.
منابع مشابه
Buckling of Doubly Clamped Nano-Actuators in General form Through Spectral Meshless Radial Point Interpolation (SMRPI)
The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. ...
متن کاملAnalysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملAn Efficient Scheme for Meshless Analysis Based on Radial Basis Functions
Abstract: A meshless method based on radial point interpolation was recently developed as an effective tool for solving partial differential equations, and has been widely applied to a number of different problems. In addition to the primary advantage of the meshless methods that the computation is performed without any connectivity information between field nodes, the radial point interpolatio...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کامل